Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Flows in nanostructures: hybrid classical-quantum models

Abstract

Flow through nanotube has many interesting peculiarities. To describe these unusual properties we suggest a model of   the flow based on crystallite liquid theory. Slip boundary condition is used instead of conventional no-slip condition.   The condition is derived by consideration of interaction of flow particles with the nanotube wall potential in the   framework of quantum mechanics. For nanotube with elastic walls another mechanism of flow plays an important   role. Namely, a model of flow caused by elastic soliton wave in its wall is suggested. As for general consideration,   a modification of the Navier-Stokes equations for the nanotube flow is derived from many-particle Hamiltonian in   the framework of quantum statistical physics. Particularly, for a model confinement the effective viscosity of the   nanotube flow is got. The obtained dependence of the viscosity on the nanotube diameter is in good correlation with   the corresponding experimental results. 

About the Authors

S. A. Chivilikhin
National Research University of Information Technologies, Mechanics and Optics
Russian Federation

S.A. Chivilikhin – associate professor



V. V. Gusarov
Saint-Petersburg State Institute of Technology; Ioffe Physical Technical Institute
Russian Federation

V.V. Gusarov – Head of Department of Physical Chemistry, Corresponding member of RAS



I. Yu. Popov
National Research University of Information Technologies, Mechanics and Optics
Russian Federation

I.Yu. Popov – Professor, Doctor of Science, Head of Department of Higher Mathematics



References

1. edited by Li D. (Ed.) Encyclopedia of microfluidics and nanofluidics. – New York: Springer, 2008.

2. Rivera J. L., Starr F. W. Rapid transport of water via carbon nanotube syringe// J. Phys. Chem. C – 2010. — 114. 3737–3742.

3. Kadau, Germann, T. C., Hadjiconstantinou, N. G., Lomdahl, P. S. & Dimonte G. Nanohydrodynamics simulations: An Atomic view of the Reyleigh-Taylor instability.// Proc. Nat. Acad. Sci. USA. – 2004. – 101. 5851–5855.

4. Joly, L., Ybert, C., E W. N., ROBBINS M.O. Probing the Nanohydrodynamics at liquid-solid interface using thermal motion. // Phys. Rev. Lett. – 2006. – 96. 046101-1 046101-4.

5. Nie, X. B., Chen, S. Y., Bocquet, L. A Continuum and molecular dynamics hybrid method for micro and nano-fluid flow. // J. Fluid. Mech. – 2004. – 500. 55–64.

6. Kang W., Landman U., U. niversality Crossover of the Pinch-Off Shape Profiles of Collapsing Liquid Nanobridges.// Phys. Rev. Lett. – 2007 – 98. 064504-1–064504-4.

7. Antognozzi, M., Humphris A. D. L. and Miles M. J. Observation of molecular layering in a confined water film and study of the layers viscoelastic properties.// Appl. Phys. Lett. – 2001. – 78. 300–302.

8. Einstein A., Smolukhovskii M. Brownian motion. – Leningrad: GITTL,1936.

9. Kogan M. N. Dynamics of rare gas (Kinetic theory). – Moskow: Nauka, 1967.

10. Frenkel Ya. I. New development of the theory of liquid state.// Appl. Uspekhi Fiz. Nauk. –1941. –25. 1–18.

11. Ubbelohde A. R. Melting and Crystal Structure. – Oxford: Clarendon Press, 1965.

12. Zatsepina G. N. Structure and Properties of Water. – Moskow: Nauka, 1974.

13. Huang C. et. al. The inhomogeneous structure of water at ambient conditions.// Proc. Nat. Acad. Sci. USA. – 2009. – 106. 15214–15218.

14. Li T.-D., Gao J., Szoszkeiwicz R., Landnan U., Riedo E. Structured and viscous water in subnanometer gaps.// Phys. Rev. B. – 2007. – 75. 115415-1–115415-6.

15. Mashl R. J., Joseph S., Aluru N. R., Jakobsson E. Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes. // Nano Letters. – 2003. – 3. 589–592.

16. Kolesnikov A.I., Zanotti J.-M., Loong Ch.-K., and Thiyagarajan P.Anomalously Soft Dynamics of Water in a Nanotube: A Revelation of Nanoscale Confinement // Phys. Lett. – 2004. – 93. 035503-1–035503-4.

17. Kolesnikova A.I., C.-K. Loonga C.K., de Souzaa N.R., Burnhamb C.J. Moravskyc A.P. Anomalously soft dynamics of water in carbon nanotubes // Physica B. – 2006. – 385386. 272-274.

18. Deryagin B. V., Ovcharenko F. D., Churaev V. N. (Eds.) Water in Disperse Systems. – Moskow: Nauka, 1989.

19. Jason K. H., Hyung G. P., Yinmin W., Michael S., Alexander B., Artyukhin C.P., Grigoropoulos A. N., Olgica B. Fast Mass Transport Through Sub2-Nanometer Carbon Nanotubes.// Science. – 2006. – 312. 1034–1037.

20. Maslov V. P. Superfluidity of classical liquid in a nanotube for even and odd numbers of neutrons in a molecule. // Theor. and Math.l Phys. – 2007. – 153. 1677–1796.

21. Hanasaki I., Nakatani A. Fluidized piston model for molecular dynamics simulations of hydrodynamic flow. // Modelling Simul. Mater. Sci. Eng. – 2006. – 14. 9–20.

22. Chivilikhin S. A., Popov I.Yu., Gusarov V. V. and Svitenkov A.I. Model of fluid flow in a nano-channel Glass phys and chem. – 2008. – 33. 315–319.

23. Batchelor, G. K. Stress generated in a non-dilute suspension of elongated particles by pure straining motion // J. Fluid Mech. – 2008. – 46. 813–829.

24. Hinch, E. J., Leal, L. G. The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles // J. Fluid Mech. – 1972. – 52. 683–712.

25. Kononova S. V. et. al. Polimer-inorganic nanocomposites based on aromatic polyamidoimides effective in the process of liquids separation // Russ. J. Gen. Chem. – 2010. – 80. 1136–1142.

26. Insepov Z., Wolf D., Hassanein A. Nanopumping Using Carbon Nanotubes// Nano Letters. – 2006. – 6, 1893–1895.

27. Gusarov, V. V., Popov, I. Yu. Flows in two-dimentional non-autonomous phases in polycrystalline systems. // Nuovo Cim. – 1996.– 18D. 799–805.

28. John A. Thomas and Alan J. H. McGaughey. Reassessing Fast Water Transport through Carbon Nanotubes. // Nano Lett. – 2008. – 8. 2788–793.

29. Yingchun Liu, Qi Wang. Transport behavior of water confined in carbon nanotubes // Phys. Rew. B. – 2005. – 72. 085420-1–085420-4.

30. Sony J., and N. R. Aluru. Why Are Carbon Nanotubes Fast Transporters of Water? // Nano Lett. – 2008. – 72. 452–458.

31. Demkov Yu. N. and Ostrovskii V. N. Zero-range Potential Method in Atomic Physics. – Leningrad: Leningrad University Publishing,1975.

32. Albeverio S., Gesztesy F., Hoegh-Krohn, Holden H. Models in Quantum Mechanics Berlin. – Solvable: Springer, 1989.

33. Pavlov B. S. Extensions theory and explicitly solvable models. // Uspekhi Math. Nauk. – 1987. – 42, 6. 99–131.

34. Chivilikhin S. A., Gusarov V. V., Popov I.Yu., Blinova I. V. et. al. Simulation of the formation of nanorolls // Russian J.Math.Phys. – 2007. 15, 410–412.

35. Gerjuoy E. Momentum Transfer CrossSection Theorem // J. Math. Phys. – 1965. – 6. 993–996.

36. Frenkel Ya. I. Kinetic Theory of Liquid. – Moscow: Nauka, 1975.

37. Olla S., Varadhan S. R. S and Yau H.-T. Hydrodynamical limit for a Hamiltonian system with weak noise// Comm. Math. Phys. – 1993. – 155. 523–560.

38. De Masi A. , Esposito R. and Lebowitz J. L. Incompressible Navier-Stokes and Euler limits of the Boltzmann equation // Comm. Pure Appl. Math. – 1989. – 42. 1189–1214.

39. Bardos C., Golse F. and Levermore D. On the asymptotic limits of kinetic theory towards incompressible fluid dynamics// Comptes Rendus de lAcad. Sci. Paris. Ser. – 1989. 1,11. 727–727.

40. Reiser B. Real processing 1V: The derivation of the Navier-Stokes equation from the principle of minimal deformation // Physica A. – 2001. – 219. 512–522.

41. Jackson J. L. and Mazur P. On the statistical mechanical derivation of the correlation formula for the viscosity // Physica. – 1964. 30, 2295–2304.

42. Visscher P. B. Visscher Renormalization-group derivation of Navier-Stokes equation // J.Stat. Phys. – 1985. – 38. 989–1013.

43. Helbingn D. Gas-kinetic derivation of Navier-Stokes-like traffic equations // Phys. Rev. E. – 1996. – 53. 2366–2381.

44. Kuni F. M. Statistical Physics and Thermodynamics. – Moscow: Nauka, 1981.

45. Bird R. B., Stewart W. E., Lightfoot E. N. Transport Phenomena. – NY: John Wiley and Sons, 2007.

46. Batchelor, G. K. An Introduction to Fluid Dynamics. – Cambridge: Cambridge University Press. 1967.

47. Khusnutdinova K. R., Samsonov A. M. and Zakharov A.S. Non-linear long-wave models for layered waveg uides with non-ideal lead // Theor. Math. Phys. – 2009. 159. 475–489.

48. Brizhik L., Eremko A., Piette B. and Zakrzewski W. Davidov soliton in zigzag nanotube// Int.J. Quant. Chem. – 2010. – 110. 10–24.

49. Davidov A.S. Solitons in Molecular Systems. –Dordrecht: Reidel,1985.

50. Popov I. Yu. Operator extensions theory and eddies in creeping flow // Physica Scripta. – 1993. – 47. 682–686.

51. Gugel Yu. V., Popov I. Yu., Popova S. L. Hydrotron: creep and slip // Fluid Dyn. Res. – 1996.– 18. 199–210.

52. Popov I. Yu. Stokeslet and the operator extension theory // Revista Matematica Univ. Compl. Madrid. – 1996. – 9. 235–258.


Review

For citations:


Chivilikhin S.A., Gusarov V.V., Popov I.Yu. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(1):7-26.

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)