Investigations of heat conductivity of nanofluids based on aluminum oxide nanoparticles
Abstract
The heat conductivity of nanofluids based on aluminum oxide nanoparticles (mean diameter of 13 nm) have been measured experimentally. Glycol and isopropyl alcohol as the based fluids were used. The non stationary “hot wire” method has been used. It was shown the heat conductivity at low volume concentration of nanoparticles (<0,5 %) corresponds to classical Maxwell theory. For higher volume concentration of nanoparticles in glycol the heat conductivity deviated to low side due to aggregate instability of the nanofluid. The anomalous growth of heat conductivity in isopropyl alcohol have been observed. The possible nature of the observed phenomenon is discussed in conclusion.
About the Authors
S. P. BardakhanovRussian Federation
S. A. Novopashin
Russian Federation
M. A. Serebrjakova
Russian Federation
References
1. Choi S.U.S. Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang (Eds.). Developments and Applications of Non-Newtonian Flows, 1995, FED-231/MD 66, ASME, New York, 99-105.
2. Maxwell J.C. A Treatise on Electricity and Magnetism, 2nd ed. — Oxford: Clarendon Press. — 1881, 1, 435.
3. Eastman J.A., Choi S.U.S., Li S., Thompson L.J., Enhanced thermal conductivity through the development of nanofluids // Proceedings of the Symposium on Nanophase and Nanocomposite Materials II. Materials Research Society, USA –1997. — 457. — 3-11.
4. Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J. Anomalously increased effective thermal conductivities of ethylene glycolbased nanofluids containing copper nanoparticles // Applied Physics Letters. — 2001. — 78. — 718-720.
5. Lee S., Choi S.U.S., Li S., Eastman J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. // Journal of Heat Transfer. — 1999. — 121. — 280-289.
6. Wang X., Xu X., Choi S.U.S. Thermal conductivity of nanoparticle–fluid mixture. // Journal of Thermophysics and Heat Transfer. — 1999. — 13. — 474-480.
7. Xuan Y., Li Q. Heat transfer enhancement of nanofluids. // International Journal of Heat and Fluid Flow. — 2000. — 21. — 58-64.
8. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids // Journal of Heat Transfer. — 2003. — 125. — 567-574.
9. Murshed S.M.S., Leong, K.C. Yang C. Enhanced thermal conductivity of TiO2–water based nanofluids // International Journal of Thermal Sciences. — 2005. — 44. — 367-373.
10. Hong T., Yang H., Choi C.J. Study of the enhanced thermal conductivity of Fe nanofluids. // Journal of Applied Physics. — 2005. — 97. — 064311-1–064311-4.
11. Li C.H., Peterson G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). // Journal of Applied Physics. — 2006. — 99. — 084314-1–084314-8.
12. Wang X.Q, Mujumbar A.S. Heat transfer characteristics of nanofluids: a review. // Inter. J. Therm. Sci. — 2007. — 46. — 1-19.
13. Buongiorno J., Venerus D. C., Prabhat N. et al., A benchmark study on the thermal conductivity of nanofluids, // Journal of Applied Physics. — 2009. — 106. — 094312.
14. Рудяк В.Я., Белкин А.А. Моделирование коэффициентов переноса наножидкостей // Наносистемы: физика, химия, математика. — 2010. — Т. 1, № 1. — С.156 — 177.
15. Skripov P.V., Smotritskiy A.A., Starostin A.A., Shishkin A.V. A Method of Controlled Pulse Heating: Applications // J. Eng. Thermophys. — 2007. — 16, 3. — 155-163.
16. Eastman J.A., Choi S.U.S., Li S., Thompson L.J., Lee S. Enhanced thermal conductivity through the development of nanofluids // Proc. Mater. Res. Soc. Symposium. Materials Res. Soc., Pittsburgh, PA. USA. Boston. MA. USA. — 1997. — 457. — 3-11.
Review
For citations:
Bardakhanov S.P., Novopashin S.A., Serebrjakova M.A. Investigations of heat conductivity of nanofluids based on aluminum oxide nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(1):27-33. (In Russ.)