Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Diffusion and laplacian transport for absorbing domains

Abstract

We study (stationary) Laplacian transport by the Dirichlet-to-Neumann formalism. Our results concern a formal solution of the geometrically inverse problem for localisation and reconstruction of the form of absorbing domains. Here, we restrict our analysis to the one- and two-dimensional cases. We show that the last case can be studied by the conformal mapping technique. To illustrate this, we scrutinize the constant boundary conditions and analyze a numeric example.

About the Authors

I. Baydoun

France

 Ibrahim Baydoun

Ecole Centrale Paris 2 Avenue Sully Prudhomme, 92290 Chtenay-Malabry



V. A. Zagrebnov
Departement de Mathematiques- Universite d’Aix-Marseille
France

Valentin A. Zagrebnov

 Laboratoire d’Analyse, Topologie et Probabilites (UMR 7353)
 CMI-Technopole Chateau-Gombert,  39, rue F. Joliot Curie, 13453 Marseille Cedex 13



References

1. D.C. Barber, B.H. Brown, Applied potential tomography. J.Phys. E, 17, P. 723–733 (1984).

2. I. Baydoun, V.A. Zagrebnov. Diffusion and Laplacian Transport. Theor.Math.Phys., 168, P. 1180–1191 (2011).

3. D.S. Grebenkov, M. Filoche, B. Sapoval. Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. Phys.Rev. E, 73, P. 021103–9 (2006).

4. A. Greenleaf, G. Uhlmann. Local uniqueness for the Dirichelet-to-Neumann map via the two plane transform. Duke Math.J., 108, P. 559–617 (2001).

5. J.K. Hunter, B. Nachtergaele. Applied Analysis. World Scientific, Singapore, 2001.

6. O. Kellog. Foundation of Potential Theory. Dover, New-York, 1954.

7. M.A. Lavrentiev, B.V. Chabat, M´ethodes de la th´eorie des fonctions d’une variable complexe. Mir, Moscow, 1972.

8. J. Lee, G. Uhlmann. Determining anisotropic real-analytic conductivities by boundary measurement. Comm.Pure Appl.Math., 42, P. 1097–1112 (1989).

9. Jia-qi Liu, Ying-Wei Lu, A new algorithm for solving the geometrical inverse problems for a partial differential equation and its numerical semulation. Proc. 11th IMACS Congress (Oslo), 1, P. 221–224 (1985).

10. A. I. Markushevich. Theory of Functions of a Complex Variable: Second Edition AMS Chelsea Publishing, 1977.

11. S.G. Mihlin. Mathematical Physics: An advanced course North-Holland, Amsterdam, 1970 (S. G. Mihlin. Lectures on Mathematical Physics, 2nd ed. Lan’ Publishing, St.Petersbourg, 2002.)

12. A.G. Ramm. A geometrical inverse problem. Inverse Probl., 2, P. L19–L21 (1986).

13. B. Sapoval. General formulation of Laplacian transfer across irregular sufaces. Phys.Rev.Lett., 73, P. 3314–3316 (1994).

14. D. Tataru. Unique continuation for solutions to PDE’s: between H¨ ormander’s theorem and Holmgren’s theorem. Comm. Partial Differential Equations, 20, P. 855–884 (1995).

15. M.E. Taylor. Partial Differential Equations II: Qualitative Studies of Linear Equations. Springer-Verlag, Berlin, 1996.

16. M.E. Taylor. Preudodifferential Operators. Princeton University Press, New Jersey. 1996.

17. V.A. Zagrebnov. From Laplacian transport to Dirichlet-to-Neumann (Gibbs) semigroups. J.Math.Phys.(Analysis, Geometry), 4, P. 551–568 (2008)


Review

For citations:


Baydoun I., Zagrebnov V.A. Diffusion and laplacian transport for absorbing domains. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(4):446-466.

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)