Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On spectral gaps in graphene in a weak constant magnetic field

Abstract

We present a mathematical introduction to a widely used discrete tight-binding model for graphene. We also introduce the “Peierls substitution,” modelling the Hamiltonian of a 2d crystal in a perpendicular uniform magnetic field in this setting. We consider a discrete single-cone Hamiltonian closely related to the (double-cone) graphene Hamiltonian. Finally, we announce in this paper a result concerning an opening of gaps in the spectrum of this single-cone Hamiltonian, when the Peierls phase-factor arises from a weak, but non-zero, external magnetic field. Full proofs will be given elsewhere.

About the Authors

M. Н. Brynildsen
Aalborg University, Department of Mathematics
Denmark

Mikkel H. Brynildsen

Aalborg



H. D. Cornean
Aalborg University, Department of Mathematics
Denmark

 Horia D. Cornean

Aalborg
 



References

1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81, P. 109–162 (2009).

2. H.D. Cornean, R. Purice. On the regularity of the Hausdorff distance between spectra of perturbed magnetic Hamiltonians. Spectral Analysis of Quantum Hamiltonians, P. 55–66 (2012).

3. P. Dietl, F. Piechon, and G. Montambaux. New magnetic field dependence of Landau levels in a graphenelike structure. Physical review letters, 100 (23), P. 236405 (2008).

4. C.L. Fefferman, M.I. Weinstein. Honeycomb lattice potentials and Dirac points. J. Amer. Math. Soc, 25, P. 1169–1220 (2012).

5. D.R. Hofstadter. Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields. Physical review B, 14 (6), P. 2239 (1976).

6. J.M. Luttinger. The effect of a magnetic field on electrons in a periodic potential. Phys. Rev., 84 (4) P. 814–817 (1951).

7. G. Nenciu. Bloch electrons in a magnetic field: Rigorous justification of the Peierls-Onsager effective Hamiltonian. Letters in mathematical physics, 17 (3), P. 247–252 (1989).

8. G. Nenciu. Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev. Mod. Phys., 63 (1), P. 91–127 (1991).

9. K.S. Novoselov, A.K. Geim, et al. Two-dimensional gas ofmasslessDirac fermions ingraphene. Nature, 438 (7065), P. 197–200 (2005).

10. K.S. Novoselov, A.K. Geim, et al. Electric field effect in atomically thin carbon films. Science, 306 (5696), P. 666–669 (2004).

11. R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. Zeitschrift f¨ur Physik A Hadrons and Nuclei, 80 (11), P. 763–791 (1933).

12. R. Rammal. Landau level spectrum of Bloch electrons in a honeycomb lattice. Journal de Physique, 46 (8), P. 1345–1354 (1985).

13. P.R. Wallace. The band theory of graphite. Physical Review, 71 (9), P. 622 (1947)


Review

For citations:


Brynildsen M.Н., Cornean H.D. On spectral gaps in graphene in a weak constant magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(4):467-473.

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)