Interaction of terahertz radiation with DNA
Abstract
A nonlinear model of DNA dynamics with coupling between conformational dynamics and proton tunneling is presented. It is demonstrated that terahertz radiation can influence both vibrational excitations and proton motion in DNA hydrogen bonds. The irradiation at the edge of far IR spectral range can promote proton tunneling. If the radiation frequency matches the vibrational mode, the generation of localized excitations in form of dissipative solitons is possible. These solitons decrease the probability of proton tunneling.
About the Author
A. N. BugayRussian Federation
Aleksandr Bugay – Ph.D., researcher
References
1. Kumar S., Li M.S. Biomolecules under mechanical force // Physics Reports. — 2010. — 486. — 1-74.
2. Knotts T.A., Ratore N., Shwartz D.C., de Pable J.J. A coarse grain model for DNA // The Journal of Chemical Physics. — 2007. — 126. — 084901.
3. Yakushevich L.V. Nonlinear Physics of DNA. — Wiley-VCH, 2004.
4. Niemeyer C.M., Mirkin C.A. (Eds.). Nanobiotechnology. Concepts, Applications and Perspectives. — Wiley-VCH, 2004.
5. Wagenknecht H.-A. (Ed.) Charge Transfer in DNA. From Mechanism to Application. — Wiley-VCH, 2004.
6. L¨owdin P.-O. Proton tunneling in DNA and its biological implications // Reviews of Modern Physics. — 1963. — 35(3). — 724-732.
7. Grebneva H.A. A Model for Targeted Substitution Mutagenesis During SOS Replication of Double-Stranded DNA Containing cis-syn Cyclobutane Thymine Dimers // Environmental and Molecular Mutagenesis. — 2006. — 47. — 733-745.
8. Tolpygo K.B, Grebneva H.A. Effect of the state of h-b-1 hydrogen bond of the character of some atom vibrations in guaninecytosine pair of the DNA molecule. // Int J Quantum Chem. — 1996. — 57. — 219-227.
9. Villani G. A time-dependent quantum dynamics investigation of the guanine-cytosine system: A six-dimensional model // The Journal of Chemical Physics. — 2008. — 128. — 114306.
10. Fedorov V.I. et al. Study of biological effects of electromagnetic radiation of submillimeter part of terahertz range. // Biomeditsiknskaya Radioelektronika, 2011.
11. Fedorov V.I. et al. Comparative study of the effects of infrared, submillimeter, and millimeter EM radiation //Biophysics. — 2001. — 46(2). — 293-297.
12. Alexandrov B.S., et al. DNA breathing dynamics in the presence of a terahertz field // Physics Letters A, 2010. — 374(10). — 12141217.
13. R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics. — Amsterdam: North-Holland, 1975.
14. Dauxois T., Peyrard M., Bishop A.R. Entropy-driven DNA denaturation // Phys. Rev. E. — 1993. — 47. — R44.
15. Sazonov S.V., Electromagnetic videosolitons and breathers in the KDP-type ferroelectric // Physics of the Solid State. — 1995. — 37(6). — 1612-1622.
16. Belonenko M.B., Nazarenko S.V. Microscopic theory of the electro-acoustic echo in order-disorder antiferro-electrics // Physics of the Solid State. — 1998. — 40(1). — 105-108.
17. Gronbech-Jensen N., Kivshar Yu. S., Samuelsen M.R. Stabilization of breathers in parametrically driven sine Gordon system// Phys. Rev. B. — 1991. — 43(7). — 5698.
18. Barashenkov I.V., Zemlyanaya E.V. Stable Complexes of Parametrically Driven, Damped Nonlinear Schr¨odinger Solitons// Phys. Rev. Lett. — 1999. — 83. — 25682571.
19. Bock J., et al. Mammalian stem cells reporgramming in response to Terahertz Radiation // PLoS Biol, 2010. — 5(12). — e15806.
20. Ratushnyak A.S. et al. Influence of submillimeter range electromagnetic radiation on neuron systems // The Third International Symposium on Modern Problems of Laser Physics, Novosibirsk, 2000. — 177.
Review
For citations:
Bugay A.N. Interaction of terahertz radiation with DNA. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(1):51-55.