Functional equations for the Potts model with competing interactions on a Cayley tree
https://doi.org/10.17586/2220-8054-2016-7-3-401-404
Abstract
In this paper, we consider an infinite system of functional equations for the Potts model with competing interactions of radius r = 2 and countable spin values 0, 1, ..., and non-zero-filled, on a Cayley tree of order two. We describe conditions on hx guaranteeing compatibility of distributions µ(n)(σn).
About the Author
G. I. BotirovUzbekistan
References
1. Ganikhodjaev N. N. The Potts model on Zd eith countable set of spin values. J. Math. Phys., 2004, 45, P. 1121–1127.
2. Ganikhodjaev N. N., Rozikov U.A. The Potts model with countable set of spin values on a Cayley tree. Letters in Math. Phys., 2006, 75, P. 99–109.
3. Eshkabilov Yu. Kh., Rozikov U.A., Botirov G.I. Phase transition for a model with uncountable set of spin values on Cayley tree. Lobachevskii Journal of Mathematics, 2013, V.34 (3), P. 256–263.
4. Eshkobilov Yu. Kh., Haydarov F.H., Rozikov U.A. Non-uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree. J. Stat. Phys., 2012, 147 (4), P. 779–794.
5. Rozikov U. A., Eshkabilov Yu. Kh. On models with uncountable set of spin values on a Cayley tree: Integral equations. Math. Phys. Anal. Geom., 2010, 13, P. 275–286.
6. Ganikhodjaev N. N., Mukhamedov F. M., Pah C. H. Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice. Phys. Lett. A, 2008, 373, P. 33–38.
Review
For citations:
Botirov G.I. Functional equations for the Potts model with competing interactions on a Cayley tree. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):401-404. https://doi.org/10.17586/2220-8054-2016-7-3-401-404