Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Negative differential conductivity in Fermi liquid in the presence of magnetic field

https://doi.org/10.17586/2220-8054-2016-7-3-422-426

Abstract

In this paper we, study the response of a Fermi liquid under the influence of an external magnetic field applied to the external electric field. The dispersion law of the Fermi liquid is obtained via AdS/CFT correspondence. The regions of the negative differential conductivity on the current-voltage characteristic were observed. The possibility of terahertz pulse generation in such systems was shown for a wide range of magnetic field strengths.

About the Authors

N. N. Konobeeva
Volgograd State University
Russian Federation

Volgograd



M. B. Belonenko
Volgograd State University; Volgograd Institute of Business
Russian Federation

Volgograd



References

1. Izyumov Yu.A., Letfulov B.M., Shipitsyn E.V., Chao K.A. A theory of ferromagnetism in the Hubbard model with infinite Coulomb interaction. Int. J. Mod. Phys., 1992, 6, P. 3479–3514.

2. Policastro G., Son D.T., Starinets A.O. From AdS/CFT correspondence to hydrodynamics. J. High Energy Phys., 2002, 9, P. 43.

3. Pal Sh.S. Model building in AdS/CMT: DC conductivity and Hall angle. Phys. Rev. D, 2011, 84, P. 126009.

4. Sachdev S. What can gauge-gravity duality teach us about condensed matter physics. Annual Rev. Cond. Mat. Phys, 2012, 3, P. 9.

5. Nakayama Yu.A lecture note on scale invariance vs conformal invariance, 2013, http://arxiv.org/abs/1302.0884.

6. Belonenko M.B., Konobeeva N.N., et al. Tunneling characteristics of a contact between a superlattice and non-Fermi liquid using the AdS/CFT correspondence. Mod. Phys. Let. B, 2014, 28, P. 1450170.

7. Levitov L.S., Shitov A.V. Green’s functions. Problems with solutions, Moscow: Fizmatlit, 2003, 392 p.

8. Belonenko M.B., Mescheryakova N.E. Electromagnetic solitons in a system of quantum dots with taking into account the Hubbard interaction. J. Rus. Las. Res., 2008, 29, P. 544.

9. Witten E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys, 1998, 2, P. 253.

10. Kulaxizi M., Parnachev A. Comments on Fermi Liquid from Holography. Phys. Rev. D, 2008, 78, P. 086004.

11. Kulaxizi M., Parnachev A. Holographic Responses of Fermion Matter. Nucl. Phys. B, 2009, 815, P. 125.

12. Charmousis C., Gouteraux B., et al. Effective Holographic, Theories for low-temperature condensed matter systems. J. High Energy Phys, 2010, 1011, P. 151.

13. Hartnol S.A. Quantum critical dynamics from black holes, 2010, http://arxiv.org/abs/0909.3553v2.

14. Gladun A.D., Ryzhij V.I. Absolute negative conductivity mechanism of the thin films in quantizing transverse field. JETP Lett., 1969, 57, P. 978.

15. Ignatov .A., Romanov Yu.A. Absolute negative conductivity in semiconductor with superlattice. Radiophys. Quant. Electr., 1978, 21, P. 90.

16. Volkov A.F., Kogan Sh.M. Physical phenomena in semiconductors with negative differential conductivity. UFN, 1968, 96, P. 633.

17. Andreev A.V., Aleiner I.L., Millis A.J. Dynamical symmetry breaking as the origin of the zero-dc-resistance state in an ac-driven system. Phys. Rev. Lett., 2003, 91, P. 056803.

18. Bergeret F.S., Huckestein B., Volkov A.F. Current-voltage characteristics and the zero-resistance state in a two-dimensional electron gas. Phys. Rev. B, 2003, 67, P. 241303(R).

19. Dragoman D., Dragoman M. Terahertz oscillations in semiconducting carbon nanotubes resonant-tunneling diodes. Physica E, 2004, 24, P. 282–289.


Review

For citations:


Konobeeva N.N., Belonenko M.B. Negative differential conductivity in Fermi liquid in the presence of magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):422-426. https://doi.org/10.17586/2220-8054-2016-7-3-422-426

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)