Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Gaussian classical capacity of gaussian quantum channels

Abstract

The classical capacity of quantum channels is the tight upper bound for the transmission rate of classical information. This is a quantum counterpart of the foundational notion of the channel capacity introduced by Shannon. Bosonic Gaussian quantum channels provide a good model for optical communications. In order to properly define the classical capacity for these quantum systems, an energy constraint at the channel input is necessary, as in the classical case. A further restriction to Gaussian input ensembles defines the Gaussian (classical) capacity, which can be studied analytically. It also provides a lower bound on the classical capacity and moreover, it is conjectured to coincide with the classical capacity. Therefore, the Gaussian capacity is a useful and important notion in quantum information theory. Recently, we have shown that the study of both the classical and Gaussian capacity of an arbitrary single-mode Gaussian quantum channel can be reduced to the study of a particular fiducial channel. In this work we consider the Gaussian capacity of the fiducial channel, discuss its additivity and analyze its dependence on the channel parameters. In addition, we extend previously obtained results on the optimal channel environment to the single-mode fiducial channel. In particular, we show that the optimal channel environment for the lossy, amplification, and phase-conjugating channels is given by a pure quantum state if its energy is constrained.

About the Authors

E. Karpov
QuIC, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles
Belgium

1050 Brussels



J. Schafer
QuIC, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles
Belgium

1050 Brussels



O. V. Pilyavets
QuIC, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles
Belgium

1050 Brussels



R. Garcıa-Patron
Max-Planck-Institut fur Quantenoptik; QuIC, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles
Germany

Hans-Kopfermann-Straße 1, 85748 Garching

1050 Brussels



N. J. Cerf
QuIC, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles
Belgium

1050 Brussels



References

1. Holevo A.S. Some estimations of the amount of information transmitted by quantum communication channel. Probl. Peredachi Inf. 9 (3), P. 3–11 (1973).

2. Schumacher B., Westmoreland M.D. Sending classical information via noisy quantum channel. Phys. Rev. A 56, P. 131–138 (1997).

3. Holevo A.S. The capacity of quantum communication channel with general signal states. IEEE Trans. Inf. Theory, 44, P. 269–272 (1998).

4. Hastings M.B. Superadditivity of communication capacity using entangled inputs. Nature Phys. 5, P. 255–257 (2009).

5. Weedbrook C., Pirandola S., Garc´ ıa-Patr´ on R., Cerf N.J., Ralph T.C., Shapiro J.H., Lloyd S. Gaussian Quantum Information. Rev. Mod. Phys. 84, P. 621–669 (2012).

6. Holevo A.S. Quantum systems, channels, information: a mathematical introduction. De Gruyter studies in mathematical physics. Walter de Gruyter GmbH & Co. KG, Berlin. 16, P. 11–349 (2012).

7. Holevo A.S., Shirokov M.E. On Shor’s channel extension and constrained channels. Comm. Math. Phys. 249, P. 417–430 (2004).

8. Shirokov M.E. The Holevo capacity of infinite dimensional channels and the addititivity problem. Comm. Math. Phys. 262, P. 131–159 (2006).

9. Holevo A.S. Entanglement breaking channels in infinite dimensions. Probl. Inf. Transmiss. 44 (3), P. 3–18 (2008).

10. Giovannetti V., Guha S., Lloyd S., Maccone L., Shapiro J.H., Yuen H.P. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92 (2), P. 027902-1–027902-4 (2009).

11. Lupo C., Pilyavets O.V., Mancini S. Capacities of lossy bosonic channel with correlated noise. New J. Phys. 11, P. 063023-1–063023-18 (2009).

12. Sch¨ afer J., Karpov E., Garc´ ıa-Patr´ on R., Pilyavets O.V., Cerf N.J. Equivalence relations for the classical capacity of single-mode Gaussian quantum channels. Phys. Rev. Lett. 111, P. 030503-1–030503-5 (2013).

13. Eisert J., Wolf M.M. Gaussian quantum channels. In: Quantum information with continuous variables of atoms and light, edited by Cerf N. J., Leuchs G., Polzik E.S. Imperial College Press, London. 1, P. 23–42 (2007).

14. Caruso F., Giovannetti V., Holevo A.S. One-mode bosonic Gaussian channels: a full weak-degradability classification. New J. Phys. 8 P. 310-1–310-18 (2006).

15. Holevo A.S. One-mode quantum Gaussian channels: structure and quantum capacity. Probl. Inf. Transmiss. 43 (1), P. 1–11 (2007).

16. Lupo C., Pirandola S., Aniello P., Mancini S. On the classical capacity of quantum Gaussian channels. Phys. Scr. T143, P. 014016-1–014016-6 (2011).

17. Pilyavets O.V., Lupo C., Mancini S. Methods for Estimating Capacities and Rates of Gaussian Quantum Channels. IEEE Trans. Inf. Theory. 58, P. 6126–6164 (2012).

18. Sch¨ afer J., Karpov E., Cerf N.J. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise. Phys. Rev. A 84, P. 032318-1–032318-16 (2011).

19. Sch¨ afer J., Karpov E., Cerf N.J. Quantum water-filling solution for the capacity of Gaussian information channels. Proceedings of SPIE. 7727, P. 77270J-1–77270J-12 (2010).

20. Sch¨ afer J., Karpov E., Cerf N.J. Capacity of a bosonic memory channel with Gauss-Markov noise. Phys. Rev. A 80, P. 062313-1–062313-11 (2009).

21. Hiroshima T. Additivity and multiplicativity properties of some Gaussian channels for Gaussian Inputs. Phys. Rev. A 73, P. 012330-1–012330-9 (2006).

22. Pilyavets O.V., Zborovskii V.G., Mancini S. Lossy bosonic quantum channel with non-Markovian memory. Phys. Rev. A 77, P. 052324-1–052324-8 (2008)


Review

For citations:


Karpov E., Schafer J., Pilyavets O.V., Garcıa-Patron R., Cerf N.J. Gaussian classical capacity of gaussian quantum channels. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(4):496-506.

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)