Development of an orbital-free approach for simulation of multi-atomic nanosystems with covalent bonds
https://doi.org/10.17586/2220-8054-2016-7-3-427-432
Abstract
On the example of the three-atomic clusters Al3, Si3, and C3, it is shown that an orbital-free version of the density functional theory may be used for finding equilibrium configurations of multi-atomic systems with both metallic and covalent bonding. The equilibrium interatomic distances, interbonding angles and binding energies are found to be in good agreement with known data.
About the Authors
V. G. ZavodinskyRussian Federation
153 Tikhookeanskaya str., 680042 Khabarovsk
O. A. Gorkusha
Russian Federation
54 Dzerzhinskogo str., 680000 Khabarovsk
References
1. Wang Y.A., Carter E.A. Orbital-free kinetic-energy density functional theory. In: Progress in Theoretical Chemistry and Physics, Kluwer, Dordrecht, 2000, 117 p.
2. Huajie Chen, Aihui Zhou. Orbital-Free Density Functional Theory for Molecular Structure Calculations. Numerical Mathematics: Theory, Methods and Applications, 2008, 1, P. 1–28.
3. Baojing Zhou, Ligneres V.L., Carter E.A. Improving the orbital-free density functional theory description of covalent materials. Journal Chemical Physics, 2005, 122, P. 044103–13.
4. Karasiev V.V., Trickey S.B. Issues and challenges in orbital-free density functional calculations. Computational Physics Communications, 2012, 183, P. 2519–2527.
5. Karasiev V.V., Chakraborty D., Shukruto O.A., Trickey S.B. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Physical Review B, 2013, 88, P. 161108–13(R).
6. Wesolowski T.A. Approximating the kinetic energy functional Ts[ρ]: lessons from four-electron systems. Molecular Physics, 2005, 103, P. 1165–67.
7. Hung L., Carter E.A. Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics. Chemical Physics Letters, 2009, 475, P. 163–170.
8. Zavodinsky V.G., Gorkusha O.A. Quantum-Mechanical Modeling without Wave Functions. Physics of the Solid States, 2014, 56 (11), P. 2329–35.
9. Kohn W., Sham J.L. Self-Consistent Equations including Exchange and Correlation Effects. Phys. Rev. A, 1965, 140, P. 1133–38.
10. Hohenbeg H., Kohn W. Inhomogeneous Electron Gas. Physical Review B, 1964, 136, P. 864–871.
11. Sivasathya S., Thiruvadigal D.J. The effects of defects on electron transport in metallic single wall carbon nanotubes. Nanosystems: physics, chemistry, mathematics, 2013, 4 (3), P. 405–408.
12. Hariharan R.M., Thiruvadigal D.J. Effect of anchoring atoms on transport properties of a carbon-dimer based molecular junctions: a first principles study. Nanosystems: physics, chemistry, mathematics, 2013, 4 (2), P. 294–298.
13. Polyakov E.A., Vorontsov-Velyaminov P.N. Exact classical stochastic representations of the many-body quantum dynamics. Nanosystems: physics, chemistry, mathematics, 2015, 6 (4), P. 501–512.
14. Junchao Xia, Chen Huang, Ilgyou Shin, Carter E.A. Can orbital-free density functional theory simulate molecules? The Journal of Chemical Physics, 2012, 136, 084102(13).
15. Zavodinsky V.G., Gorkusha O.A. New Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles. Modeling and Numerical Simulation of Material Science, 2015, 5, P. 39–46.
16. Carling K.M., Carter E.A. Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases. Modelling and simulation in materials science and engineering, 2003, 11, P. 339–348.
17. Raghavachari K., Logovinsky V. Structure and bonding in small silicon clusters. Phys. Rev. Lett., 1985, 55, P. 2853–2856.
18. Van Orden A., Saykally R.J. Small carbon clusters: spectroscopy, structure, and energetics. Chemical Review, 1998, 98, P. 2313–57.
19. Feng-Chuan Chuang, Wang C.Z., Ho K.H. Structure of neutral aluminum clusters Aln(2 ≤ n ≤ 23): Genetic algorithm tight-binding calculations. Phys. Rev. B, 2006, 73, 125431(7).
20. Sarry A.M., Sarry M.F. To the density functional theory. Physics of Solid State, 2012, 54 (6), P. 1315–22.
21. Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computational Physics Communications, 1999, 119, P. 67–98.
22. Perdew J.P., Zunger A. Self-interaction correction to density functional approximation for many-electron systems. Physical Review B, 1981, 23, P. 5048–79.
23. Ceperley D.M., Alder B.J. Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980, 45, P. 566–569.
24. Tomanek D., Schluter M.A. Structure and bonding of small semiconductor clusters. Phys. Rev. B, 1987, 36, P. 1208–17.
25. Mukhtarov A.P., Normurodov A.B., Sulaymonov N.T., Umarova F.T. Charge States of Bare Silicon Clusters up to Si8 by Non-Conventional Tight-Binding Method. Journal of nanoand electronic physics, 2015, 7, 01012(7).
26. Nayak S.K., Khanna S.N., Jena P.J. Evolution of bonding in AlnN clusters: A transition from nonmetallic to metallic character. Physical Review B, 1998, 57, P. 3787–90.
27. Matrnez A., Vela A. Stability of charged aluminum clusters. Physical Review B, 1994, 49, 17464(4).
28. Karton A., Tarnopolsky A., Martin J.M.L. Atomization energies of the carbon clusters Cn (n = 2 − 10) revisited by means of W4 theory as well as density functional, Gn, and CBS methods. International Journal of Interface between Chemistry and Physics, 2009, 107, P. 977–1003.
29. Afshar M., Babaei M., Kordbacheh A.H. First principles study on structural and magnetic properties of small and pure carbon clusters (Cn, n = 2 − 12). Journal of Theoretical and Applied Physics, 2014, 8, P. 103–108.
30. McCarthy M.C., Thaddeus P. Rotational spectrum and structure of Si3. Physical Review Letters, 2003, 90, 213003(4).
31. Liu B., Lu Z.Y., et al. Ionization of medium-sized silicon clusters and the geometries of the cations. Journal of Chemical Physics, 1998, 109, P. 9401–09.
32. Raghavachari K., Rohlfing C.M. Bonding and stabilities of small silicon clusters: A theoretical study of Si7–Si10. Journal of Chemical Physics, 1988, 89, P. 2219–34.
33. Tse J.S. Electronic structure of the dimer and trimer of aluminium. Theoretical Chemistry (Journal of Molecular Structures), 1988, 165, P. 21–24.
34. Beckstedte M., Kley A., Neugebauer J., Scheffler M. Density functional theory calculation for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Computational Physics Communications, 1997, 107, P. 187–205.
Review
For citations:
Zavodinsky V.G., Gorkusha O.A. Development of an orbital-free approach for simulation of multi-atomic nanosystems with covalent bonds. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):427-432. https://doi.org/10.17586/2220-8054-2016-7-3-427-432