Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The use of transient electrolysis in the technology of oxide composite nanostructured materials: review

https://doi.org/10.17586/2220-8054-2016-7-3-433-450

Abstract

The available experimental material relating to the patterns of formation and properties of functional nanostructured transition metal oxide (Mo, Co, Mn, Ni, Fe, V) composite materials is reviewed. Advanced coatings are considered those whose formation method are simple and do not require high energy costs, expensive equipment and permit the creation of materials with desired physical and chemical properties in a specified manner. In this review, the priority of oxide composite nanostructured materials technology is given to a transient electrolysis method based on the analysis of a data set that demonstrates its advantages. The results are presented for a number of studies aimed at identifying and analyzing the nature and regularities of processes that take place when obtaining oxide composite nanostructured materials using transient electrolysis methods.

About the Authors

Zh. I. Bespalova
Platov South-Russia State Polytechnical University (NPI)
Russian Federation

Novocherkassk



A. V. Khramenkova
Platov South-Russia State Polytechnical University (NPI)
Russian Federation

Novocherkassk



References

1. Raeva O.V., Shestakov I.Ya. Electrochemical Method of Discharged Waters Cleaning with of Alternating Curent. Journal of Siberain University. Engeneering & Technologies, 2011, 3 (4), P. 348–355.

2. Kilimnik A.B., Nikiforova E.Y. Electrochemical behavior of nickel and its oxides in concentrated sodium hydroxide solutions. Russian Journal of Electrochemistry, 2013, 49 (12), P. 1122–1126.

3. Degtyareva E.E., Kilimnik A.B., Ankudimova I.A. Anodic Oxidation of Sodium 2–mercaptobenztiazolate anion in the Presence of 5–Methyl–2hexanol. Russian Journal of Electrochemistry, 2007, 43 (10), P. 1203–1205.

4. Klochko N.P., Volkova N.D., Starikov V.V. et al. Utilization of alternating current methods for manufacture of selective absorbing coatings for heat collectors. Functional Materials, 2005, 12 (3), P. 123–125.

5. Zhang J., Ge H., Li Z., Ding Z. Internal heating of lithium–ion batteries using alternating current based on the heat generation model in frequency domain. Journal of Power Sources, 2015, 273, P. 1030–1037.

6. Abdulla T., Yerokhin A., Goodall R. Effect of plasma electrolytic oxidation coating of the specific strength. Materials and design, 2011, 32, P. 3742–3749.

7. Yoshioka T., Chavez-Valdez A., Rocther J.A. et al. AC electrophoretic deposition of organic-inorganic composite coatings. Journal of colloid and interface science, 2013, 392, P. 167–171.

8. Kudryavtsev Yu.D., Bespalova Zh.I., Pyaterko I.A. et al. Optimization of anodic aluminum oxide filling with polytetrafluoroethylene in polarization with asymmetrical alternating current. Russian Journal of Applied Chemistry, 2000, 73 (4), P. 631–634.

9. Makarochkina S.M., Rozin Yu.I., Samarin K.M. et al. Electrochemical Synthesis of Tetraethylleaf at a Lead Trickle–Bed Electrode. Soviet Electrochemistry, 1985, 21 (12), P. 1529–1533.

10. Alsrayhen E., McLeod E. et al. Impact of AC/DC spark anodizing on the corrosion resistance of Al–Cu alloys. Electrochimica Acta, 2011, 56, P. 6041–6048.

11. Cha´vez-Valdez A., Boccaccini A.R. Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods.

12. Electrochimica Acta, 2012, 65, P. 70–89.

13. Cha´vez-Valdez A., Herrmann M., Boccaccini A.R. Alternating current electrophoretic deposition (EDP) of TiO2 nanoparticles in aqueous suspensions. Journal of Colloid and Interface Science, 2012, 375, P. 102–105.

14. Hibino T., Inoue T., Sano M. Electrochemical reduction of NO by alternating current electrolysis using yttria–stabilized zirconia as the solid electrolyte: Part II. Modification of Pd electrode by coating with Rh. Solid State Ionics, 2000, 130 (1–2), P. 31–39.

15. Klochko N.P., Volkova N.D., Starikov V.V. et al. Utilization of alternating current methods for manufacture of selective absorbing coatings for heat collectors. Functional Materials, 2005, 12 (3), P. 548–554.

16. Hekman F., Sohrabi B., Rahmanifar M.S. Growth of the cobalt using AC electrochemical deposition on anodized aluminum oxide templates. J. Nanostruct. Chem., 2014, http://link.springer.com/article/10.1007/s40097-014-0105-2.

17. Karimi E.Z., Esmaeilzaden J., Marzbanrad E. Electrospun TiO2 nanofibre-based gas sensors fabricated by AC electrophoresis deposition. Bull. Mater. Sci., 2015, 38 (10), P. 209–214.

18. Sadykov N.R., Kocherga E.Y., Dyachkov P.N. Nonlinear current in modified nanotubes with exposure to alternating and cocstant electric fields. Russian Journal of Inorganic Chemistry, 2013, 58 (8), P. 951–955.

19. Therese G.H.A., Kamath P.V. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chem. Mater., 2000, 12 (5), P. 1195–1204.

20. Korobochkin V.V., Balmashov M.A., Gorlushko D.A. et al. Phase Composition and Pore Structure of Nanoparticulate Tin Oxides Prepared by AC Electrochemical Synthesis. Inorganic Materials, 2013, 49 (10), P. 993–999.

21. Korobochkin V.V., Kosintsev V.I., Bystritskii L.D., Kovalevskii E.P. Preparation of Aluminum Hydroxide Gel by AC Electrolysis. Inorganic Materials, 2002, 38 (9), P. 914–916.

22. Usoltseva N.V., Korobochkin V.V., Balmashnov M.A. Air Carbonisation of AC Electrochemical Copper and Aluminium Oxidation Products. International Journal of Engeneering & Technology, 2013, 2 (1), P. 2355–2362.

23. Dolinina A.S., Korobochkin V.V., Usoltseva N.V. et al. Joint destruction of cadmium and copper at alternating current electrolysis in sodium hydroxide solution. Procedia Chemistry, 2014, 10, P. 369–372.

24. Raju K., Yoon D.H. Electrophoretic deposition of BaTiO3 in an aqueous suspension using asymmetric alternating current. Materials Letters, 2013, 110, P. 188–190.

25. Jagminas A., Valsiu¯nas I., Sˇimku¯naite˙ B., Vaitkus R. Pecularities of Bi0 nanowire arrays growth within the alumina template pores by ac electrolysis. Journal of Crystal Growth, 2008, 310, P. 4351–4357.

26. Sankar P.R., Tiwari P., Kumar R. et al. Synthesis and characterization of cadmium selenide nanostructures on porous aluminum oxide templates by frequency alternating current electrolysis. Applied Surface Science, 2010, 256, P. 2097–2103.

27. Atrashchenko A.V., Krasilin A.A., et al. Electrochemical methods of synthesis of hyperbolic metamaterials. Nanosystems: Physics, Chemistry, Mathematics, 2012, 3 (3), P. 31–51.

28. Yoon C., Suh J.S. Electrochemical Fabrication of CdS/Co Nanowire Arrays in Porous Aluminum Oxide Templates. Bull. Korean Chem., 2002, 23 (11), P. 1519–1523.

29. Sameshima T., Hirata Y. et al. Factors affecting formation of ceria nanoparticles by alternating current electrolysis of aqueous solutions. Materials Chemistry and Physics, 2012, 136, P. 313–316.

30. Xu J. Synergy effect on a suspended mixture of ceria and activated carbon for the photocatalytic degradation of phenol. Powder Tech., 2011, 210, P. 1–5

31. Wang C., Ao Y., et al. Preparation, characterization and photocatalytic activity of a novel composite photocatalyst: Ceria-coated activated carbon. Journal of Hazardous Materials, 2010, 184 (1–3), P. 35–41.

32. Kang H.S., Kang Y.C., Koo H.Y. et al. Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solutio. Mater. Sci. Eng. B, 2006, 127 (2–3), P. 99–104.

33. Wang Y., Zhang F., Guo Y. et al. 3D navicular ceria micro/nanocomposite structure with multi-layered arrangement and its application in CO oxidation. Mater. Chem. Phys., 2010, 120 (1), P. 23–30.

34. Ivanov V.K., Kopitsa G.P., et al. Hydrothermal growth of ceria nanoparticles. Russian Journal of Inorganic Chemistry, 2009,54 (12), P. 1857–1861.

35. Ivanov V.K., Polezhaeva O.S., et al. Hydrothermal microwave synthesis of nanocrystalline cerium dioxide. Doklady Chemistry, 2009, 426 (2), P. 131–133.

36. Panahi-Kalamuei M., Alizadeh S., Mousavi-Kamazani M., Salavati-Niasari M. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. Journal of Industrial and Engineering Chemistry, 2015, 21, P. 1301–1305.

37. Rao R., Yang M., et al. Mesoporous CeO2 nanobelts synthesized by a facile hydrothermal route via controlling cationic type and concentration of alkali. Microporous and Mesoporous Materials, 2013, 169, P. 81–87.

38. Pinjari D.V., Pandit A.B. Room temperature synthesis of crystalline CeO2 nanopowder: Advantage of sonochemical method over conventional method. Ultrason. Sonochem., 2011, 18 (5), P. 1118–1123.

39. Baranchikov A. Y., Ivanov V.K., Tretyakov Yu. D. Sonochemical synthesis of inorganic materials. Russian Chemical Reviews, 2007, 76 (2), P. 133.

40. Yin L., Wang Y., Pang G. et al. Sonochemical synthesis of cerium oxide nanoparticles–effect of additives and quantum size effect. J. Colloid and Interface Sci., 2002, 246, P. 78-84.

41. Ishutina Z.N., Gusarov V.V., Malkov A.A. et al. Phase Transformations in Nanosized γ–Al2O3-SiO2–TiO2. Zhurnal Neorganicheskoj Khimii, 1999, 44 (1), P. 16–19.

42. Vasilevskaya A., Almjasheva O. Features of phase formation in the ZrO2–TiO2 system under hydrothermal conditions. Nanosystems: physics chemistry mathematics, 2012, 3 (4), P. 75–78.

43. Baranchikov A.E., Ivanov V.K., Tretyakov Yu.D. Hydrothermal microwave synthesis of nanocrystalline anatase. Doklady Chemistry, 2012, 447 (1), P. 241–243.

44. Leyva-Porras C., Toxqui-Teran A., et al. Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted solgel method. Journal of Alloys and Compounds, 2015, 647, P. 627–636.

45. Ouzzine M., Macia´-Agullo´ J.A., et al. Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Applied Catalysis B: Environmental, 2014, 154-155, P. 285–293.

46. Prakash T., Navaneethan M., et al. Synthesis of TiO2 nanoparticles with mesoporous spherical morphology by a wet chemical method. Materials Letters, 2012, 82, P. 208–210.

47. Kosobudsky I.D., Ushakov N.M., Yurkov G. Yu. Et al. Synthesis and Structure of Polyethylene-Matrix Composites Containing Zinc Oxide Nanoparticles. Inorganic Materials, 2005, 41 (11), P. 1172–1177.

48. Bugrov A.N., Vlasova E.N., et al. Distribution of zirconia nanoparticles in the matrix of poly(4,4’-oxydiphenylenepyromellitimide). Polymer Science Series B, 2012, 54 (9–10), P. 486–495.

49. Yudin V.E., Otaigbe J.U., et al. Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polimide nanocomposites. Express Polymer Letters, 2008, 2 (7), P. 485–493.

50. Kononova S.V., Korytkova E.N., et al. Nanocomposite based on polyamidoimide with hydrosilicate nanoparticles of varied morphology. Russian Journal of Applied Chemistry, 2007, 80 (12), P. 2142–2148.

51. Kononova S.V., Korytkova E.N., Maslennikova T.P. et al. Polymer–Inorganic Nanocomposites Based on Aromatic Polyamidoimides Effective in the Processes of Liquids Separation. Russian Journal of General Chemistry, 2010, 80 (6), P. 1136–1142.

52. Gofman I.V., Svetlichnyi V.M., Yudin V.E. et al. Modification of Films of Heat–Resistant Polyimides by Adding Hydrosilicate and Carbon Nanoparticles of Various Geometries. Russian Journal of General Chemistry, 2007, 77 (7), P. 1158–1163.

53. Golubeva O.Yu., Yudin V.E., et al. Nanocomposites on the basis of polyimide termoplasts and magnesium-silicate nanoparticles with montmorillonite structure. Russian Journal of Applied Chemistry, 2007, 80 (1), P. 106–110.

54. Ivanov V.K., Shaporev A.S., et al. Synthesis of polymer composites based on nanocrystalline ZnO and CeO2. Doklady Chemistry, 2010, 431 (2), P. 109–112.

55. Gorelik V.S., Mikov S.V., Sokolovskii M.I., Tsuzuki T. Secondary Emission of Nanocrystalline Zinc Oxide. Inorganic Materials, 2006, 42 (3), P. 282–285.

56. Ezhovskii Yu. K., Egorov A.L. Chromium Oxide Nanolayers on Gallium Arsenide. Inorganic Materials, 2006, 42 (4), P. 368–373.

57. Yue H.M., Liu Z.L., Wang Y., Yao K.L. Electrical Properties of Nanocrystalline CeO2–Y2O3 Thin Films Prepared by the Sol-Gel Method. Inorganic Materials, 2003, 39 (7), P. 720–724.

58. Almjasheva O.V., Korytkova E.N., Maslov A.V., Gusarov V.V. Preparation of nanocrystalline alumina under hydrothermal conditions. Inorganic Materials, 2005, 41 (5), P. 4604-67.

59. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions. Russian Journal of General Chemistry, 2002, 72 (6), P. 849-853.

60. Komlev A.A., Gusarov V.V. Mechanism of Nanocrystals Formation of the Spinel Structure in the MgO–Al2O3–H2O System under the Hydrothermal Conditions. Russian Journal of General Chemistry, 2011, 81 (1), P. 2222–230.

61. Tomkovich M.V., Andrievskaya E.R., Gusarov V.V. Formation under hydrothermal conditions and structural features of nanoparticles based on the system ZrO2-Gd2O3. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2 (2), P. 6–14 (In Russian).

62. Bugrov A.N., Almjasheva O.V. Formation of nanoparticles Cr2O3 in hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2 (4), P. 126–132 (In Russian).

63. Gusarov V.V., Ishutina Zh.N., Malkov A.A., Malygin A.A. Peculiarities of the solid-phase chemical reaction in formation of mullite in the nanosize film composition. Dokl. Akad. Nauk, 1997, 357 (2), P. 203-205 (In Russian).

64. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russian J. of Gen. Chem., 1997, 67 (12), P. 1846-1851.

65. Kolenko Yu.V., Burukin A.A., Churagulov B.R. Hydrothermal synthesis of nanocrystalline powders of various crystalline phases of ZrO2 and TiO2. Russian Journal of Inorganic Chemistry, 2002, 47 (1), P. 1609–1615.

66. Pourmortazavi S.M., Marashianpour Z., Karimi M.S., Mohammad-Zadeh M. Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles. Journal of Molecular Structure, 2015, 1099, P. 232–238.

67. Harra J., Nikkanen J.-P., et al. Gas phase synthesis of encapsulated iron oxidetitanium dioxide composite nanoparticles by spray pyrolysis. Powder Technology, 2013, 243, P. 46–52.

68. Srivastava V., Gusain D., Sharma Y.C. Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceramics International, 2013, 39 (8), P. 9803–9808.

69. Haider M.A., Capizzi A.J., Murayama M., McIntosh S. Reverse micelle synthesis of perovskite oxide nanoparticles. Solid State Ionics, 2011, 196 (1), P. 65–72.

70. Bermejo E., Becue T., Lacour C., Quarton M. Synthesis of nanoscaled iron particles from freeze-dried precursors. Powder Technology, 1997, 94 (1), P. 29–34.

71. Khayati G.R., Nourafkan E., Karimi G., Moradgholi J. Synthesis of cuprous oxide nanoparticles by mechanochemical oxidation of copper in high planetary energy ball mill. Advanced Powder Technology, 2013, 24 (1), P. 301–305.

72. Bayal N., Jeevanandam P. Synthesis of TiO2–MgO mixed metal oxide nanoparticles via a sol-gel method and studies on their optical properties. Ceramics International, 2014, 40 (10), Part A, P. 15463–15477.

73. Kudryavtsev Yu.D., Fesenko L.N. Behavior of Porous Nickel during Alternating Current Electrolysis. Sov. Electrochemistry, 1976, 12 (3), P. 344–348.

74. Kudryavtsev Yu. D., Kukoz F.I., Fesenko L.N. Experimental Study Concerning the Current Distribution in a Porous Nickel Electrode During Polarization with Alternating Current. Sov. Electrochemistry, 1975, 11 (3), P. 352–355.

75. Bespalova Zh. I., Ivanov V.V., Smirnitskaya I.V. Fabrication of a Titanium Anode with an Active Coating Based on Mixed Oxides of Base Metals. Russian Journal of Applied Chemistry, 2010, 83 (2), P. 242–246.

76. Galushkin N.E., Kudryavtsev Yu.D. The Effect of External Current Frequency on Depth Distribution of the Quantity of Electricity Passed Through a Porous Electrode. Russian Journal of Electrochemistry, 1993, 29 (10), P. 1030–1032.

77. Galushkin N.E., Yazvinskaya N.N., Galushkin D.N. Generalized Model for Self-Charge Process in Alkaline Batteries. Journal of The Electrochemical Society, 2012, 159 (8), P. 1315–1317.

78. Galushkin N.E., Fesenko L.N. Simulating Decomposition of Hydrogen Sulfide in a Three-Dimentional Electrofilter. Russian Journal of Electrichemistry, 1997, 33 (8), P. 852–856.

79. Method of Making Selective Coating, Patent. 2393275 Russia: MPK C 25D 11/10, F24J 2/48, Bespalova Z.I., Klushin V.A., Djachishin A.S. No. 2009130707/02, Issue No. 18, 7 p.

80. Bespalova Zh.I., Lovpache Yu.A., Lipkin M.S. et al. Composite Coatings Based on Copper Oxides Electrodeposited from Solutions and on Polymers. Russian Journal of Applied Chemistry, 2006, 79 (7), P. 1105–1109.

81. Erokhin A.L., Lubimov V.V., Ashitkov R.V. Model of Oxide Coatings Formation During Plasma-Electrolytic Oxidizing of Aluminum in Silicate Solutions. Physics and Chemistry of Materials Treatment, 1996, 5, P. 39–44.

82. Galushkin D.N., Yazvinskaya N.N., Galushkin N.E. Investigation of the process of thermal runway in nickel-cadmium accumulators. Journal of Power Sources, 2008, 177 (2), P. 610–616.

83. Ivanova N.D., Ivanov S.V., Boldyrev E.I. et al. Thin-Film Cathode Materials Based on Chromium Oxides. Russian Journal of Applied Chemistry, 2003, 76 (7), P. 1067–1069.

84. Lukiyanchuk I.V., Rudnev V.S., Panin E.S. et al. Modification with Manganese of Anodic Layers Containing Tungsten Oxides. Russian Journal of Applied Chemistry, 2003, 76 (10), P. 1597–1599.

85. Legagneur V., Liao J.-H., et al. Li2Mn(VO3)4·2H2O: synthesis, crystal structure, thermal behavior and lithium insertion/deinsertion properties. Solid State Ionics, 2000, 133, P. 161–170.

86. Apostolova R.D., Shembel E.M., Nagirnyi V.M. Synthesis and Investigations of Electrolytic Sodium-Vanadium Oxide Compounds for Cathodes of Lithium Batteries: The Production of Compounds with Stable Initial Characteristics. Russian Journal of Electrochemistry, 2000, 36 (1), P. 36–42.

87. Nagirnyi V.M., Apostolova R.D., Baskevich A.S., Shembel E.M. Joint Electrolytic Deposition of Vanadium (V) and Chromium (III) Oxides from Aqueous Sulfate Solutios. Russian Journal of Applied Chemistry, 2004, 77 (11), P. 1777–1780.

88. Shembel E.M., Apostolova R.D., Nagirny V.M. Electrochemical Synthesis of the Cathode Materials Based on Metal Oxides for Lithium Secondary Batteries. The 197th Meeting of the Electrochemical Society: Abstracts of Papers, 2000, Toronto, P. 105.

89. Nagirnyi V.M., Apostolova R.D., et al. Joint Electrolytic Deposition of Vanadium and Manganese Oxides. Russian Journal of Applied Chemistry, 2002, 75 (4), P. 552–557.

90. Zoski C.G. Handbook of Electrochemistry. Elsevier, 2007, 934 p.

91. Apostolova R.D., Kolomoets O.V., Danilov M.O., Shembel E.M. Electrolytic Co, Ni–Bimetalsulfide Composites with Hydrophilizated Multi-Wall Carbon Nanotubes in a Prototype Lithium Accumulator. Surface Engineering and Applied Electrochemistry, 2014, 50 (1), P. 18–27.

92. Nagirnyi V.M., Apostolova R.D., et al. Electrolytic Deposition of Cobals (III) Oxide in the Presence of Nickel (II) and Chromium (III) Ions. Russian Journal of Applied Chemistry, 2002, 75 (6), P. 905–910.

93. Nagirnyi V.M., Apostolova R.D., Baskevich A.S., Shembel E.M. Anodic Deposition of Vanadium (V) Oxide from Solutions in the Presence of Nickel Ions. Russian Journal of Applied Chemistry, 75 (12), P. 1968–1971.

94. Nagirnyi V.M., Apostolova R.D., Shembel E.M. Electrodeposition of Molybdenum Oxide and Its Structural Characteristics. Russian Journal of Applied Chemistry, 2006, 79 (9), P. 1438–1442.

95. Nagirnyi V.M., Apostolova R.D., Baskevich A.S. et al. Electrolytic Preparation of Vanadium (V) Oxide from Oxovanadium (IV) Sulfate Solutions in the Presence of Sodium Ions. Russian Journal of Applied Chemistry, 2001, 74 (9), P. 1470–1473.

96. Nagirnyi V.M., Apostolova R.D., Baskevich A.S. et al. Electrolytic Preparation of Vanadium (V) Oxide from Saturated Solutions of Ammonium Metavanadate. Russian Journal of Applied Chemistry, 2001, 74 (9), P. 1474–1478.

97. Nagirnyi V.M., Apostolova R.D., Baskevich A.S. et al. Electrolytic Synthesis of Binary Oxide Systems Based on Manganese (II) Oxide. Russian Journal of Applied Chemistry, 2002, 75 (2), P. 213–218.

98. Nagirnyi V.M., Apostolova R.D., Baskevich A.S., Shembel E.M. Electrolytic Deposition of Molybdenum Oxide from Aqueous Solutions at Room Temperature. Russian Journal of Applied Chemistry, 2004, 77 (1), P. 71–73.

99. Nagirnyi V.M., Apostolova R.D., Shembel E.M. Surface Morphology of Electrolytic Deposits of Vanadium, Cobalt, and Manganese Oxides. Russian Journal of Applied Chemistry, 2006, 79 (9), P. 1443–1446.

100. Belous A.G., Yanchevskii O.Z., Kramarenko A.V. Synthesis of Nanosize Particles of Cobalt and Nickel Oxides from Solutions. Russian Journal of Applied Chemistry, 2006, 79 (3), P. 345–350.

101. Poizot P., Laruelle S., et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407, P. 496–499.

102. Nuli Y.N., Zhao S.L., Qin Q.Z. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries. J. Power Sources, 2003, 14, P. 113–120.

103. Ahmad A.S., El-Shobaky G.A., Al-Noaimi A.N., El-Shobaky H.G. Surface and catalytic properties of gamma-irradiated CuO and NiO catalysts. Mater. Lett., 1996, 26, P. 107–112.

104. Curri M.L., Agostiano A., Mavelli F. et al. Reverse micellar systems: self organized assembly as effective route for the synthesis of semiconductor nanocrystals. Mater. Sci. Eng. C. Biomim. Mater., Sens. Syst., 2002, 22, P. 423–426.

105. Dirksen J.A., Duval K., Ring T.A. NiO thin-film formaldehyde gas sensor. Sensors and Actuators B: Chemical, 2001, 80 (2), P. 106–115.

106. Hotovy´, I., Huran J., et al. Preparation and characterization of NiO thin films for gas sensor applications. Vacuum, 2000, 58, P. 300–307.

107. Svegl F., Orel B., Hutchins M.G. et al. Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. J. Electrochem. Soc., 1996, 143, P. 1532–1539.

108. Takanashi T. First-principles Investigation of the Phase Stability for Ba. Ba(B02+B005+)O Microwave Dielectrics with the Complex Perovskite Structure. Jpn. J. Appl. Phys., 2000, 39, P. 5637–5641.

109. Nagirnyi V.M., Apostolova R.D., Shembel E.M. Anodic Processes Occurring upon V2O5 Electrodeposition. Russian Journal of Applied Chemistry, 2007, 80 (1), P. 71–73.

110. Stepanova L.I., Ivashkevich L.S., Branitskii G.A. Hydrothermal Synthesis of Tungsten Molybdenum Mixed Oxides. Russian Journal of Inorganic Chemistry, 2009, 54 (10), P. 1553–1558.

111. Sˇvachula J., Tichy J., Machek J. Oxidation of Propanal on Molybdenum-Vanadium Oxide Catalyst. Catalysis Letters, 1989, 3, P. 257–262.

112. Neiman A.Ya., Trafieva M.F., Kostikov Yu.P. Chemism and mass–transfer routes during phase formation in the V2O5 – MoO3. Russian Journal of Inorganic Chemistry, 2005, 50 (10), P. 1472–1484.

113. Sviridova T.V., Antonova A.A., Kokorin A.I. et al. Nanostructured Vanadium – Molybdenum Mixed Oxides Prepared by the Solvothermal Method. Russian Journal of Physical Chemistry, 2015, 9 (1), P. 22–28.

114. Shagisultanova G.A., Ardasheva L.P., Orlova I.A. Electroand Photoelectroactivity of Thin-Layer Polymars Based on [NiSalen] and [NiSalphen] Complexes. Russian Journal of Applied Chemistry, 2003, 76 (10), P. 1631–1636.

115. Mikhailov O.V. Immobilization of (dd)heteronuclear hexacyanoferrates (II) in a gelatin matrix. Russian Chemical Bulletin, 2008, 57 (1), P. 8–17.

116. Airapetyan S.S., Balayan G.G., Khachatryan A.G. Synthesis and Some Characteristics of Magnetic Matrices for Fixation of Biologically Active Substances. Russian Journal of Applied Chemistry, 2001, 74 (3), P. 519–521.

117. Pimkov I.V., Lutsenko O.G., Golubchikov O.A. Immobilization of Cobalt Disulfophthalocyanine Complex on Polypropylene. Russian Journal of Applied Chemistry, 2007, 80 (5), P. 828–832.

118. Electroplating solution composition for organic polymer-zinc alloy composite plating and plated metal material using such composition. Patent EP 1719826 A1, MPK C 25D 5/26, C 25 D 15/02, C 25 D 3/56, Haruta Y., Hiraki T., Kubota K., N 04801689.3, 2006/45, 14 p.

119. Polymer coated particles having immobilized metal ions on the surfaces thereof. Patent 4677027 A US: MPK 32 B 15/08, B 32 B 19/02; B 32 B 19/04, Lindahl M., Porath J. N 06/786,857, N 788,857, 5 p.

120. Process for the surface-immobilization of anti-microbial polymers by metal deposition. Patent 0144657 US: MPK 25 D 9/02, C 25 D 205/316, Inhester M., Ottersbach P. N 10/645,553.

121. Pomogailo A.D. Catalysis by polymer – immobilized metal complexes. Gordon & Breach Science Publishing. Amsterdam, 1998, 322 p.

122. Tarnizhevskij B.V. Assessment of the Effectiveness of Operating Solar Heating Installation in Russia. Thermal Engineering, 1996, 43 (5), P. 373–376.

123. Multilaer Selective Absorbing Coating for Solar Collector and Method of Making Said Coating. Patent 2407958 Russia: MPK F 24 J 2/48, Djachishin A.S., Jazvina I.M., Stadnik A.V. N 2008149287/06.

124. Alturaif H.A., ALOthman Z.A., Shapter J.G., Wabaidur S.M. Use of Carbon Nanotubes (CNTs) with Polymers in Solar Cells. Molecules, 2014 (http://www.mdpi.com/journal/molecules).

125. Multi-layer selective coating for solar collector. Patent 93028687 Russia: MPK F 24J2/02, Dyachshin A.S., Dremlyuga A.A., Saksonsky V.A., 93028687/06, Bull. No. 10.

126. Multi-Layer Selective Coating For Solar Collector. Patent 2044964 Russia: P6 F24J2/48, Dyachshin A.S., Dremlyuga A.A., Saksonsky V.A. N 93028687/06, Bull. No. 15.

127. Absorbing Coating. Patent 2271058 Russia: P H01Q17/00, Golovkov A.A., Verbitskij A.V. N 2004122349.09, Bull. No. 6.

128. Absorbing Coating For Attenuation of Reflected Electromagnetic Waves; Capacitance Element For Absorbing Coating; Inductance Element For Absorbing Coating. Patent 2125327 Russia: 6 H01Q17/00, Marushkin V.A. N 96102682/09, Bull. No. 8.

129. Absorbermaterial fu¨r solarthermische Anwendung Gew. 202006011147 U1 DE, F24J2/48, NARVA Lichtquellen GmbH + Co. KG, 09618 Brand–Erbisdorf, N 202006011147U1; filed Sep.21.2006, date of patent Oct.26.2006.

130. Moldovanov K.A., Hecceck R., Skrynnikov A.M. Reflectivities of Light-Absorptive coatings Within Visible Wavelenghts Range. Proceedung of SPIE, 2000, 4093, P. 181–192.

131. Fredj N., Burleigh T.D. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Oxide Films. Journal of Electrochemical Society, 2011, 158 (4), P. 104-110.

132. Moldovanov K.A., Anisimova I.A., Skrynnikov A.M. Reflectivity of Al coating sputtered by using the nitrogencontaining plasma. Proceeding of SPIE, 2001, 4447, P. 98–108.

133. Pigments Reflecting Optical Emission with Specified Long-Wave Border and Absorbing Emission with Specified Short–Wave Border or at Specified Wavelength. Patent 2127747 Russia: P6 C09C1/00, C09D5/32, C09D5/33Egorov Ju. P., Malinovskaja T.D. N 95110119/04, Bull. No. 9.

134. Singh S.M. Paints and Painting Procedures for Solar Energy Collectors. Proceedings of “the Workshop on Solar Water Heating Systems”, 1985, New Delhi, India, 6–10 May, P. 153–158.

135. ISO/CD 12592,2 Solar Energy-Materials for Flat-Plate Collectors. Qualification Test Procedure for Solar Surface Durability.

136. Mozalev A., Surganov A., Magaino S. Anodic Process for Forming Nanostructured Metal-Oxide Coatings for Large-Value Precise Microfilm Resistor Fabrication. Electrochimica Acta, 1999, 44 (21–22), P. 2891–3898.

137. Skoneczny W., Bara M. Aluminium Oxide Composite Layers Obtained by the Electrochemical Method in the Presence of Graphite. Material Science – Poland, 2007, 25 (4), P. 1053–1062.

138. Stojanov E., Popov D., Stoychev D. Bildung und Schutzwirkung von Oxidschichten and of Aluminum. Galvanotechnik, 1994, 85 (10), P. 3240–3247.

139. Yang S., Aoki Y., Skeldon P. et al. Growth of porous anodic alumina films in hot phosphate-glycerol electrolyte. J. Solid State Electrochem., 2011, 15, P. 689–696.

140. Patermarakis G., Moussoutzanis K. Aluminium anodizing in ultra-dense sulfate baths: discovery by overall kinetic and potentiometric studies of the critical role of interface colloidal Al2(SO4)3 nanoparticles in the mechanism of growth and nanostructure of porous oxide coatings. J. Solid State Electrochem., 2005, 9, P. 205–233.

141. Koyama S., Aoki Y., Nagata S., Habazaki H. Formation and dielectric properties of anodic oxide films on Zr-Al alloys. J. Solid State Electrochem., 2011, 15, P. 2221–2229.

142. Henley V.F. Anodic Oxidation of Aluminium and Its Alloys. Pergamon Press, Oxford, 1982, 170 p.

143. Dolgovesova I.P., Bakovets V.V., Nikiforova G.L., Royak A.Ya. Distribution of Alloying Components During The Anodic-Spark Oxidation of Aluminum Alloys in Concentrated Sulfuric Acid. Protection of Metals, 1987, 23 (4), P. 515–518.

144. Korolev Y.A., Greish A.A., Kozlova L.M. et al. Glycerol Dehydroxylation in Hydrogen on a Raney Cobalt Catalyst. Catalysis in Industry, 2010, 2 (3), P. 287–289.

145. Gnedenkov S.V., Khrisanfova O.A., Ignateva L.N. et al. Aluminum Complexation with Metal Tartrates. Russian Journal of Inorganic Chemistry, 2005, 50 (12), P. 1925–1932.

146. Clark A. Oxides of the Transition Metals as Catalysts. Ind. Eng. Chem., 1953, 45 (7), P. 1476–1480.

147. Temperoni G., Gignini P., Icovi M., Panero S. Non-stoichiometric molybdenum oxides as cathodes for lithium cells: Part III. cells based on Mo18O52. J. Electroanal. Chem., 1980, 108 (2), P. 169–180.

148. Li Y.B., Bando Y., Golberg D., Kurasima K. Field emission from MoO3 nanobelts. Appl. Phys. Lett., 2002, 81, P. 5048–5052.

149. Ressler T., Walter A., Huang Z.D., Bensch W. Structure and properties of a supported MoO3SBA-15 catalyst for selective oxidation of propene. Journal of catalysis, 2008, 254 (2), P. 170–179.

150. Gervasini A., Wahba L., Finol M.D., Lamonier J.-F. Property and activity of molybdates dispersed on silica obtained from various synthetic procedures. Materials Sciences and Applications, 2012, 3, P. 195–212.

151. Wang G., Ji Y., et al. Synthesis of molybdenum oxide nanoplatelets during crystallization of the precursor gel from its hybrid nanocomposites. Chem. Mater., 2007, 19, P. 979–981.

152. Prasada A.K., Kubinskin D.J., Gouma P.I. Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sensors and Actuators B, 2003, 93, P. 25–30.

153. Ivanovskaya M.I., Gurlo A. Ch., Lutynskaya E.V., Romanovskaya V.V. Effect of Heat Tretment Conditions on Formation of Paramagnitic Centers of Molybdenum in MoO3. Russian Journal of General Chemistry, 1997, 67 (11), P. 1683–1688.

154. Ivanova N.D., Boldyrev E.I., Stadnic O.A., Zheleznova L.I. Composition and Catalytic Properties of Co (II) Anodic Oxidation Products. Ukrainskij Khimicheskij Zhurnal, 2004, 70 (5–6), P. 51–53.

155. Tysyachny V.P., Shembel E.M., Apostolova R.D. et al. Chronovoltammetry of Electrolytic Molybdenum Oxides at the Electrochemical Intercalation/Deintercalation of Lithium Ions. J. Solid State Electrochem., 2003, 8 (1), P. 20–22.

156. Beltowska-Lehman E. Kinetic Correlations in Codeposition of Coatings of Molybdenum-Iron Metal Alloys. Journal of Applied Electrochemistry, 1990, 20 (1), P. 132–138.

157. Podlaha E.J., Landolt D. Induced codeposition. I. An experimental investigation of Ni-Mo alloys. J. Electrochem. Soc., 1996, 143 (3), P. 885–892.

158. Podlaha E.J., Landolt D. Induced codeposition. II. A mathematical model descrtibing the electrodeposition of Ni-Mo alloys. J. Electrochem. Soc., 1996, 143, P. 893–899.

159. Podlaha E.J., Landolt D. Induced codeposition. III. Molybdenum alloys with nickel, cobalt and iron. J. Electrochem. Soc., 1997, 144 (5), P. 1672–1680.

160. Gomez E., Pellicer E., Valles E. Detection and characterization of molybdenum oxides formed during the initial stages of cobalt– molybdenum electrodeposition. Journal of Applied Electrochemistry, 2003, 33, P. 245–252.

161. Gomez E., Kipervaser Z.G., Pellice E., Valles E. Extracting deposition parameters for cobalt-molybdenum alloy from potentiostatic current transients. Phys. Chem., 2004, 6, P. 1340–1344.

162. Sabhapathi V.K., Hussain O.Md., et al. Optical absorption studies in molybdenum trioxide films. Physica status solidi (a), 1995, 148 (1), P. 167–173.

163. Kuznetsov V.V., Pshenichkina T.V. Kinetics of Cathodic Reactions in the Electrodeposition of Cobalt-Molybdenum Alloy. Russian Journal of Electrochemistry, 2010, 46 (4), P. 401–410.

164. Kuznetsov V.V., Pavlov M.R., Kuznetsov K.V., Kudryavtsev V.N. Kinetics of Cathodic Processes of Deposition of Nickel-Molybdenum Alloys from an Ammonia–Citrate Electrolyte. Russian Journal of Electrochemistry, 2003, 39 (12), P. 1338–1341.

165. Gomez E., Pellicer E., Valles E. An approach to the first stages of cobalt-nickel-molybdenum electrodeposition in sulphate–citrate medium. Journal of Electroanalytical Chemistry, 2005, 580, P. 222–230.

166. Gomez E., Pellicer E., Valles E. Developing plating baths for the production of cobalt-molybdenum films. Surface and Coatings Technology, 2005, 197 (2–3), P. 238–246.

167. Obradovic M.D., Stevanovic R.M., Despic A.R. Electrochemical deposition of Ni-W alloys from ammonia-citrate electrolyte. Journal of Electroanalytical Chemistry, 2003, 552, P. 185–196.

168. McEvoy T.M., Stevenson K.J. Electrochemical quartz crystal microbalance study of the electrodeposition mechanism of molybdenum oxide thin films from peroxo-polymolybdate solution. Analytica Chimica Acta, 2003, 496 (1–2), P. 39–51.

169. Ibrahim M.A.M., Rehim Abd El, Moussa S.O. Electrodeposition of noncrystalline cobalt-tungsten alloys from citrate electrolytes. Journal of Applied Electrochemistry, 2003, 33 (7), P. 627–633.

170. Gomez E., Pellicer E., Valles E. Influence of the bath composition and the pH on the induced cobalt-molybdenum electrodeposition. Journal of Electroanalytical Chemistry, 2003, 556, P. 137–145.

171. Murase K., Ando H., et al. Determination of Mo(VI) species and composition in Ni-Mo alloy plating baths by raman spectra factor analysis. J. Electrochem. Soc., 2000, 147 (6), P. 2210–2217.

172. Nagirnyi V.M., Apostolova R.D., Shembel E.M. Electrodeposition of Molybdenum Oxide and Its Structural Characteristics. Journal of Applied Electrochemistry, 2006, 79 (9), P. 1438–1442.

173. Nagirnyi V.M., Apostolova R.D., Baskevich A.S., Shembel E.M. Electrolytic Synthesis of Complex Oxide Systems by Cathodic Deposition of Molybdenum Oxide from Aqueous Solutions in the Presence of Nickel (II) and Thiosulfate Ions. Russian Journal of Applied Chemistry, 2003, 76 (9), P. 1438–1443.

174. Sinkeviciute D., Baltrusaitis J., Dukstiene N. Layered molybdenum oxide thin films electrodeposited from sodium citrate electrolyte solution. J. Solid State Electrochem., 2011, 15, P. 711–723.

175. Danilov M.O., Ivanova N.D., Boldyrev E.I. et al. Nanostructured Composites for Power Cells Based on Molybdenum-modified Carbon Nanotubes. Proceeding of Conference “11th Advanced Bateries, Accumulators and Fuel Cells, ABAF 2010”, University of Technology, Faculty of Electrical EngineringBrno, Czech Republic, 19 September 2010 through 22 September 2010, P. 39–43.

176. Talanov V.M, Shirokov V.B. Tilting structures in spinels. Acta Cryst., 2012, A68, P. 595–606.

177. Talanov V.M, Shirokov V.B. Atomic order in spinel structure – a group-theoretical analysis. Acta Cryst., 2014, A70, P. 49-63.

178. Talanov V.M. Anion ordering in spinels. Physica Status Solidi (A), 1989, 115 (1), K1–K4.

179. Talanov V.M. Calculation of structural parameters of spinels.Physica Status Solidi (B), 1981, 106 (1), P. 99–106.

180. Bespalova Zh.I., Khramenkova A.V. Preparation of Oxide and Metal-Complex Polymer-Immobilized Composite coatings on the Steel Surface. Russian Journal of Applied Chemistry, 2012, 85 (11), P. 1681–1685.

181. Bespalova Zh.I., Khramenkova A.V. A study of the possibility of obtaining catalytically active oxide compounds on a solid support by transient electrolysis. Russian Journal of Applied Chemistry, 2013, 86 (4), P. 539–544.

182. Bespalova J.I., Khramenkova A.V., Abdala R.M., Dmitriev V.P. Study of the phase composition and structure of composite coatings based on transitionmetal oxide compounds via X-ray diffraction and X-ray absorption fine structure spectroscop. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2014, 8 (1), P. 60–65.

183. Method for Obtaining Coating from Metal Oxides on Steel. Patent 2449061 Russia: P C25D 11/34, C25D 3/56, Bespalova Zh.I., Smirnitskaia I.V., Khramenkova A.V. N 2010142537/02, Bull. No. 12.

184. Cohen E., Gutoff E. Modern Coating and Drying Technology. Wiley-VCH, 1992, 336 p.

185. Delmon B. Catalyst Deactivation. Proceeding of the 7th International Symposium “Studies in Surface Science and Catallysis”, Cancun, Mexico, 1997, p. 39.

186. Atuchin V.V., Gavrilova T.A., Kostrovsky V.G. et al. Morphology and Structure of Hexagonal MoO3 Nanorods. Inorganic Materials, 2008, 44 (6), P. 62–627.

187. Majumdar S., Sharma I.G. Oxidation Behavior of MoSi2 and Mo(Si,Al)2 Coated Mo–0.5Ti–0.1Zr–0.02C Alloy. Intermetallics, 2011, 19, P. 541–545.

188. Tamizhmani G., Capuano G. Improved Electrocatalytic Oxygen Reduction Performance of Platinum Ternary Alloy-Oxide in SolidPolymer-Electrolyte Fuel Cells. J. Electrochem. Soc., 1994, 141 (4), P. 968–975.

189. Kuznetsov V.V., Kalinkina A.A., Pshenichkina T.V. Electrochemical Properties of Composite Materials Based on Platinum Modified with Molybdenum Compounds. Russian Journal of Electrochemistry, 2007, 43 (7), P. 776–781.

190. Wang Y., Fachini E.R., et al. Effect of Surface Composition of Electrochemically Codeposited Platinum/Molybdenum Oxide on Methanol Oxidation. J. Electrochem. Soc., 2001, 148, P. 222–226.

191. Talanov, V.M., Ereyskaya, G. P. Fundamentals of Nanochemistry and Nanotechnology, edited by V.M. Talanov. Novocherkassk: SouthRussian State Polytechnical University. 2014, 524 p.

192. Talanov V.M., Ereyskaya G.P., Yuzyuk Y.I. Introduction to Chemistry and Physics of Nanostructures and Nanostructured Materials, edited by V.M. Talanov. Moscow: Academy of Natural Science, 2008, 389 p.


Review

For citations:


Bespalova Zh.I., Khramenkova A.V. The use of transient electrolysis in the technology of oxide composite nanostructured materials: review. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):433-450. https://doi.org/10.17586/2220-8054-2016-7-3-433-450

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)