Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Quasi-fractals: New possibilities in describing of the self-similar clusters

Abstract

In this paper we propose a method for parameterization of fractal clusters which allows us to represent as quasi-fractals. The quasi-fractals are self-similar objects with a slower (logarithmic) scaling in comparison with conventional fractals. The proposed method on flat clusters, obtained by the model of Witten-Sander in which dipole-dipole and charge-dipole interactions between particles were additionally introduced is tested. The results suggest that
these clusters can be interpreted as fractals and as quasi-fractals but in the second case we have a clear connection between external conditions of growth and geometry of the clusters (in terms of new fitting parameters). 

About the Author

A. P. Alekhin
Kazan (Volga Region) Federal University, Institute of Physics, Theoretical Physics Department
Russian Federation

Alexander Alekhin - engineer,

Kazan.



References

1. Мандельброт Б.Б. Фрактальная геометрия природы. М:. Институт компьютерных исследований, 2002. 656 с.

2. Потапов А.А. Фракталы в радиофизике и радиолокации. Топология выборки. М.: Университетская книга, 2005. 847 с.

3. Смирнов Б.М. Физика фрактальных кластеров. М.: Наука, 1991. 136 с.

4. Федер Е. Фракталы. М.: Мир, 1991. 254 с.

5. Nigmatullin R.R., Alekhin A.P. Realization of the Riemann-Liouville integral on new self-similar objects. In Books of abstracts “Fifth EUROMECH Nonlinear Dynamics Conference”, Eindhoven University of Technology, Netherlands, 2005, P.175-176.

6. Nigmatullin R.R., Alekhin A.P. Quasi-Fractals: new possibilities in description of disordered media. Advances in Fractional Calculus, 2007, P.377-388.

7. Witten T.A. Sander L.M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett, 1981, V.47, P.1400-1403.

8. Nigmatullin R.R., Le Mehaute A. Is there a geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Sol., 2005, V.351, P.2888-2899.

9. Божокин С.В. Паршин Д.А. Фракталы и мультифракталы. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001, 128 с.


Review

For citations:


Alekhin A.P. Quasi-fractals: New possibilities in describing of the self-similar clusters. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(2):29-36. (In Russ.)

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)