Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Universal interatomic potential for pure metals

Abstract

A new interatomic potential for metals based on the embedded atom method is proposed in this paper. Some approximation of electron density distribution is suggested from the basic principles of quantum mechanics. The form of this distribution defines not only the pair potential but also the particular form of embedding energy function. To describe various metal properties one should choose only two parameters of the electron density distribution. The parameters are determined empirically by fitting to the equilibrium lattice constant, sublimation energy, vacancy formation energy and elastic constants. Potential parameters for Al(fcc), Fe(bcc) and Mg(hcp) are presented. Potential is expressed by simple functions and can be used in molecular dynamics simulations of large atomic systems.

About the Authors

V. E. Zalizniak
Siberian Federal University
Russian Federation

Victor Zalizniak – Associate Professor, PhD



O. A. Zolotov
Siberian Federal University
Russian Federation

Oleg Zolotov – Associate Professor, PhD



References

1. Daw M.S. and Baskes M.I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals // Phys. Rev. Letters. — 1983. — 50(17). — 1285.

2. Daw M.S. and Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. — 1983. — 29. — 6443.

3. Finnis M. W. and Sinclair J. E. A simple empirical N-body potential for transition metals // Phil. Mag. A. — 1984. — 50(1). — 45.

4. Sutton A. P. and Chen J. Long-range Finnis–Sinclair potentials // Phil. Mag. Letters. — 1990. — 61(3). — 139.

5. Ercolessi F., Tosatti E. and Parrinelo M. Au (100) surface reconstruction // Phys. Rev. Letters. — 1986. — 57(6). — 719.

6. Ercolessi F., Parrinelo M. and Tosatti E. Simulation of gold in the glue model // Phil. Mag. A. — 1988. — 58(1). — 213.

7. Foiles S.M., Baskes M.I. and Daw M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys // Phys Rev B. — 1986. — 33(12). — 7983.

8. Johnson R.A. Analytic nearest-neighbor model for fcc metals // Phys Rev B. — 1988. — 37(8). — 3924.

9. Doyama M., Kogure Y., Embedded atom potentials in fcc and bcc metals // Comput. Mater. Science. — 1999. — 14(1–4), 80.

10. Dai X.D., Kong Y., Li L.H. and Lin B.X. Extended Finnis-Sinclair potential for bсс and fсс metals and alloys // J. Phys.: Condensed Metter. — 2006. — 18. — 4527.

11. Karolewski M.A. Tight-binding potentials for sputtering simulations with fcc and bcc metals // Radiation Effects and Defects in Solids. — 2001. — 153(3). — 239.

12. Cleri F. and Rosato V. Tight-binding potentials for transition metals and alloys // Phys. Rev. B. — 1993. — 48(1). – 22.

13. Shunling Chen, Jincheng Xu, Hongsheng Zhang, A new scheme of many-body potentials for hcp metals // Comput. Mater. Science. — 2004. — 29. — 428.

14. Ландау Л.Д., Лифшиц Е.М., Теоретическая физика. Т. 3. Квантовая механика. — М.: Наука, 1989.

15. Фок В.А., Начала квантовой механики. — М.: Наука, 1976.

16. Jones R.O. and Gunnarsson O. The density functional formalism, its application and prospects // Rev. Mod. Phys. — 1989. — 61(3). — 689-746.

17. Баранов М.А., Дятлова И.В., Бумажникова К.H., Бразовский В.Е., Электростатическое приближение и его применение к описанию устойчивости многокомпонентных металлических соединений // Горизонты Образования. Научно-Образовательный Журнал АлтГТУ. — 2003. — 5. — 26-44.

18. Rose J.H., Smith J.R., Guinea F., Ferrante J. Universal features of the equation of state of metals // Phys. Rev. B. — 1984. — 29. — 2963–2969.

19. Kittel C. Introduction to solid state physics. — New York : Wiley, 1996.

20. de Boer F.R., Boom R., Mattens W.C.M., Miedema A.R., Niessen A.K. Cohesion in metals. — Amsterdam: North Holland, 1988.

21. Puska M. and Nieminen R.M. In: Density functional methods in chemistry and materials science. — New York: Wiley, 1997.

22. Doyama M. and Koehler J.S. The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure and liquid metals // Acta Metall. — 1976. — 24(9). — 871-879.

23. Simmons R.O. and Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook. — Cambridge MA: MIT Press, 1977.

24. Jacobs P.W.M., Zhukovskii Yu.F., Mastrikov Yu., Shunin Yu.N. Bulk and surface properties of metallic aluminium: DFT simulations // Computer Modelling & New Technologies. — 2002. — 6(1). — 7-28.

25. Tyson W.R. and Miller W.A. Surface free energies of solid metals: Estimation from liquid surface tension measurements // Surface Science. — 1977. — 62(1). — 267.


Review

For citations:


Zalizniak V.E., Zolotov O.A. Universal interatomic potential for pure metals. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(1):76-86. (In Russ.)

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)