Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Dielectric properties of polyamide 12-chromium (III) oxide nanocomposites

https://doi.org/10.17586/2220-8054-2016-7-3-472-478

Abstract

Broadband dielectric spectroscopy was employed to study polymer nanocomposites based on PA12 filled with different loading (0.1 – 10 wt.%) of nanosized (average grain size of about 1 – 5 nm) chromium (III) oxide. The experimental dielectric data were analyzed within the formalisms of complex permittivity and electric modulus. Three relaxation processes and Maxwell–Wagner–Sillars (MWS) interfacial polarizations were observed. It was found that all the relaxations were sensitive to filler contents. The presence of nanosized amphoteric chromium (III) oxide was shown to lead to the softening of the polyamide matrix that manifested in decrease of the activation energy of the αand β-relaxation processes and glass transition temperatures. The softening of polymer matrix is the reason for the decrease in the mechanical properties of the polymer nanocomposites as compared to that of neat PA12.

About the Authors

E. S. Shapoval
ITMO University
Russian Federation

Kronverkskiy pr., 49, 197101 St. Petersburg



V. V. Zuev
ITMO University; Institute of Macromolecular Compounds of the Russian Academy of Sciences
Russian Federation

Kronverkskiy pr., 49, 197101 St. Petersburg; Bolshoi pr., 31, 199004 St. Petersburg



References

1. Yan F., Li J., et al. Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization.J. Nanopart. Res., 2009, 11, P. 289–296.

2. Balakrishnan S.,, Bonder M.J., Hadjipanayis G.C. Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J. Magn. Magn. Mater., 2009, 321, P. 117–122.

3. Giri S.K., Pradhan G.C., Das N. Thermal, electrical and tensile properties of synthesized magnetite/polyurethane nanocomposites using magnetite nanoparticles derived from waste iron ore tailing. J. Polym. Res., 2014, 21, 446.

4. Kalia S., Kango S., et al. Magnetic polymer nanocomposites for environmental and b iomedical applications. Colloid. Polym. Sci., 2014, 292, P. 2025–2052.

5. Vollenberg P.H.T., Heikens D. Particle size dependence of the Young’s modulus of filled polymers: 1. Preliminary experiments. Polymer, 1989, 30, P. 1656–1662.

6. Gersappe D. Molecular Mechanisms of Failure in Polymer Nanocomposites. Phys. Rev. Lett., 2002, 89, 058301(1–4).

7. Dos Santos L.R., Ligabue R., et al. New magnetic nanocomposites: Polyurethane/Fe3O4-synthetic talc. Eur. Polym. J., 2015, 69, P. 38–49.

8. Shapoval E.S., Zuev V.V. Novel polyamide 12/ chromium (III) oxide nanoparticles composites: melting behaviour and complex isothermal crystallization kinetics. Polymer Composites, 2015, 36 (6), P. 999–1005.

9. Jordan J., Jacob K.I., et al. Experimental trends in polymer nanocomposites?a review. Mater. Sci. Eng. A, 2005, 393, P. 1–11.

10. Zhu L., Narh K.A. Numerical simulation of the tensile modulus of nanoclay-filled polymer Composites. J. Polym. Sci. Part B. Polym. Phys., 2004, 42, P. 2391–2406.

11. Ciprari D., Jakob K., Tannenbaum R. Characterization of polymer nanocomposites interphase and its impact on the mechanical properties. Macromolecules, 2006, 39, P. 6565–6573.

12. Kango S., Kalia S., et al. Surface modification of inorganic nanoparticles for development of organic?inorganic nanocomposites?A review. Prog. Polym. Sci., 2013, 38, P. 1232–1261.

13. Allegra G., Raos G., Vacatello M. Theories and simulations of polymer based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci., 2008, 33, P. 683–731.

14. Adachi K., Kotaka T. Dielectric normal mode relaxation. Progr. Polym. Sci., 1993, 18, P. 585–622.

15. Boyer R.F. Dependence of mechanical properties on molecular motion in polymers. Polym. Eng. Sci., 1968, 8, P. 161–185.

16. Liu H., Brinson L.C. Reinforcing efficiency of nanoparticles: a simple comparison for nanocomposites. Compos. Sci. Tech., 2008, 68, P. 1502–1512.

17. Rathmanathan K., Cavaille J.Y., Johari J.P. The dielectric properties of dry and waterSaturated nylon 12. J. Polym. Sci. Part B. Polym. Phys., 1992, 30, P. 341–348.

18. Laredo E., Hernandez M.C. Moisture effect on the lowand high-temperature dielectric relaxations in nylon-6. J. Polym. Sci. Part B. Polym. Phys., 1997, 35, P. 2879–2888.

19. Starkweather Jr.H.W., Avakian P. Conductivity and the electric modulus in polymers. J. Polym. Sci. Part B. Polym. Phys., 1992, 30, P. 637–641.

20. Havriliak S., Negami S., A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. Part C, 1966, 14, P. 99–117.

21. Havriliak S., Negami S., A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 1967, 8, P. 161–210.

22. Kremer F., Schonhals A. Broadband dielectric spectroscopy. Springer, New York, 2003.

23. Angell C.A., Ngai K.L., et al. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys., 2000, 88, 3113.

24. Plazek D.J., Magil J.H. Physical properties of aromatic hydrocarbons I. J. Chem. Phys., 1998, 35, P. 3038–3050.

25. Bureau E., Cabot C., Marais S., Saiter J.M. Study of the ?-relaxation of PVC, EVA and 50/50 EVA70/PVC blend. Eur. Polym. J., 2005, 41, P. 1152–1158.

26. Treacy M.M.J., Ebesen T.W., Gibson J.M. Nanoparticles as reinforced agents. Nature (London), 1996, 381, P. 678–680.

27. Schaefer D.W., Justice R.S. How nano are nanocomposites. Macromolecules, 2007, 40, P. 8501–8517.

28. Sinitsin A.N., Zuev V.V. Dielectric relaxation of fulleroid materials filled PA6 composites and the study of its mechanical performance.Nanosystems: physics, chemistry, mathematics, 2015, 6, P. 570-?582.

29. Baird M.E., Goldworthy G., Creasey C.J. Low frequency dielectric behavior of polyamides. Polymer, 1971, 12, P. 159–175.


Review

For citations:


Shapoval E.S., Zuev V.V. Dielectric properties of polyamide 12-chromium (III) oxide nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):472-478. https://doi.org/10.17586/2220-8054-2016-7-3-472-478

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)