Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Investigation on structural and photoluminescence properties of (Co, Al) Co-doped SnO2 nanoparticles

https://doi.org/10.17586/2220-8054-2016-7-3-494-498

Abstract

Pure and (Co, Al) co-doped (Co=1, 3, 5 mol %, and Al = 5 mol % as constant) SnO2 nanoparticles were synthesized in aqueous solution by the chemical co-precipitation method using polyethylene glycol (PEG) as a stabilizer. The effects of structural and photoluminescence of (Co, Al) co-doped SnO2 nanoparticles are investigated. The XRD pattern reveals that the samples are in a single phase rutile type tetragonal crystalline structure of SnO2. The peak positions with Co concentration are slightly shifted to lower 2θ values and size of particles from XRD calculations are in between 20–30 nm. The Raman studies of the samples reveal that the Raman peaks are shifted towards lower wave numbers, when compared to those of pure SnO2 at 150 cm−1, 303 cm−1, 476 cm−1, 630 cm−1, and 765 cm−1 respectively. Photoluminescence studies show that pure SnO2 has an emission peak at 444 nm and (Co, Al) co-doped samples show emission peaks at 417 nm, 433 nm and 485 nm with exciting wave length 320 nm. The PL intensity increases and broadening of peaks for co-doped samples with increase of Co concentration indicates the decrease of size of the crystallinity. The UV absorption spectrum exhibits absorption at 310 nm, and is in agreement with the emission spectra.

About the Authors

P. Venkateswara Reddy
Department of Physics, Sri Venkateswara University
India

Tirupati-517 502, A.P.



S. Venkatramana Reddy
Department of Physics, Sri Venkateswara University
India

Tirupati-517 502, A.P.



B. Sankara Reddy
Visweswaraiah Institutes of Science and Technology
India

Angallu, Madana Palli, A.P.



R. P. Vijayalakshmi
Department of Physics, Sri Venkateswara University
India

Tirupati-517 502, A.P.



References

1. Gudiksen M.S., Lauhon L.J., Wang J., Smith D., Lieber C.M. Nature, 2002, 415, P. 617.

2. Wang Z.L., Song J.H. Science, 2006, 312, P. 242.

3. Sun X.M., Li Y.D. Angew. Chem., Int. Ed., 2004, 43, P. 3827.

4. Tang Z.Y., Wang Y., Shanbhag S., Giersig M., Kotov N.A. J. Am. Chem. Soc., 2006, 128, P. 6730.

5. Kar A., Patra A. J. Phys. Chem C, 2009, 113, P. 4375.

6. Xu X., Zhuang J., Wang X. J. Am. Chem. Soc., 2008, 130, P. 12527.

7. Lu E.J.H., Ribeiro C., Giraldi T.R., Longo E., Leite E.R., Varela J.A. Appl. Phys. Lett., 2004, 84, P. 1745.

8. Harrison P.G., Willet M.J. Nature, 1988, 332, P. 337.

9. Ferrere S., Zaban A., Gregg B.A. J. Phys. Chem B, 1997, 101, P. 4490.

10. Wang W.W., Zhu Y.J., Yang L.X. AdV. Funct. Mater., 2007, 17, P. 50.

11. Zhu J., Lu Z., Aruna S. T., Aurbach D., Gedanken A. Chem. Mater., 2000, 12, P. 2557.

12. He Y.S., Campbell J.C., Murphy R.C., Arendt M.F., Swinnea J.S. J. Mater. Res., 1993, 8, P. 3131.

13. Wang Y., Jiang X., Xia Y. J. Am. Chem. Soc., 2003, 125, P. 16176.

14. Xi G., Ye J. Inorg. Chem., 2010, 49, P. 2302.

15. Chen Y.J., Xue X.Y., Wang Y.G., Wang T.H. Appl. Phys. Lett., 2005, 87, P. 233503.

16. Liu Z., Zhang D., Han S., Li C., Tang T., Jin W., Liu X., C. AdV. Mater., 2003, 15, P. 1754.

17. Kolmakov A., Klenov D.O., Lilach Y., Stemmer S., Moskouits M. Nano Lett., 2005, 5, P. 667.

18. Liu Y., Dong J., Liu M. Adv. Mater, 2004, 16, P. 353.

19. Ki Chang Song, Yong Kang, Materials Letters, 2000, 42, P. 283.

20. H. Hallila, P. Me´ninia, H. Auberta. Procedia Chemistry, 2009, 1, P. 935.

21. Zhang J., Gao L. Chem. Lett., 2003, 32, P. 458.

22. Gu F., Wang S.F., Lu¨ M.K., Zhou G.J., Xu D., Yuan D.R. J. Phys. Chem B, 2004, 108, P. 8119.

23. Chowdhury P.S., Saha S., Patra A. Solid State Commun., 2004, 131, P. 785.

24. Faglia G., Baratto C., Sberveglieri G., Zha M., Zappeltini A. Appl. Phys. Lett., 2005, 86, P. 011923.

25. Maestre D., Cremades A., Piqueras J. J. Appl. Phys., 2005, 97, P. 044316.

26. Gu F., Wang S.F., Song C.F., Lu¨ M.K., Qi Y.X., Zhou G.J., Xu D., Yuan D.R. Chem. Phys. Lett., 2003, 372, P. 451.

27. Munnix S., Schmeits M. Phys. ReV. B, 1983, 27, P. 7624.

28. Chiodini N., Paleari A., Dimartino D., Spinolo G. Appl. Phys. Lett., 2002, 81, P. 1702.

29. Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E. J. Appl. Phys., 1996, 79, P. 7983.

30. Liu Y.X., Yang Q.B., Xu C.F. J. Appl. Phys.,2008, 104, P. 064701.

31. Godinho K.G., Walsh A., Watson G.W. J. Phys. Chem. C, 2009, 113, P. 439.

32. Gu F., Wang S.F., Lu¨ M.K., Zhou G.J., Xu D., Yuan D.R. J. Phys. Chem B, 2004, 108, P. 8119.

33. Zhijie Li, Wenzhong Shen, Xue Zhang, Limei Fang, Xiaotao Zu. Colloids and surfaces A: Physicochem. Eng. Aspects, 2008, 327, P. 17.

34. Abello L., Bochu B., Gaskov A., Koudryavtseva S., Lucazeau G., and Rumyantseva, M. Structural characterization of nanocrystalline SnO2 by X-Ray and Raman Spectroscopy. J.Solid State Chem., 1998, 135, P. 78–85.

35. Fang L.M., Zu X.T., Li Z.J., Zhu S., Liu C.M., Wang L.M., Gao F., Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method. J. Mater. Sci.: Mater. Electron, 2008, 19, P. 868–874.

36. Mandal S.K., Nath T.K., Das A. J. Appl. Phys., 2007, 101, P. 123920.


Review

For citations:


Venkateswara Reddy P., Venkatramana Reddy S., Sankara Reddy B., Vijayalakshmi R.P. Investigation on structural and photoluminescence properties of (Co, Al) Co-doped SnO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):494-498. https://doi.org/10.17586/2220-8054-2016-7-3-494-498

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)