Effect of excess selenium in the formation of Cu2Zn1.5Sn1.2(S0.9+Se0.1)4 alloys for solar cell applications
https://doi.org/10.17586/2220-8054-2016-7-3-509-512
Abstract
Copper zinc tin sulfide/selenide Cu2ZnSn(S, Se)4 (CZTSSe) is an alternative promising material for solar cell applications. It exhibits a high optical absorbance and tunable band gap. We have investigated the effect of excess selenium on the formation of CZTSSe phase which was prepared by the thermal melt method. The CZTSSe alloys were characterized by X-ray diffraction (XRD), Raman spectroscopy and UV-VIS spectroscopy. The crystallographic structure and phase were confirmed by X-ray diffraction and Raman spectroscopic techniques. In Raman spectroscopy, we found that the phase shifts from 327 cm−1 to 338 cm−1 when the selenium content excess is 5 %. In optical studies, a band gap for the CZTSSe alloys of about 1.43 eV to 1.44 eV was observed.
About the Authors
Chinnaiyah SripanIndia
Pondicherry
Annamraju Kasi Viswanath
India
Pondicherry
R. Ganesan
India
Department of Physics.
Bangalore, Karnataka
References
1. Ito K., Nakazawa T. Direct Liquid Coating of Chalcopyrite Light-Absorbing Layers for Photovoltaic Devices. Jpn. J. Appl. Phys, 1988, 27(1), P. 2094–2097.
2. Katagiri H., Saitoh K., et al. Miyajima Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells, 2001, 65(1), P. 141–148.
3. Seol J.S., Lee S.Y., et al. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells, 2003, 75(1), P. 155–162.
4. Katagiri H., Jimbo K., et al. Development of CZTS-based thin film solar cells. Thin Solid Films, 2009, 517(7), P. 2455–2460.
5. Katagiri H., Jimbo K., et al. Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Appl. Phys. Express, 2008, 1(4), P. 041201.
6. Todorov T.K., Reuter K.B., Mitzi D.B. Photovoltaic Devices: High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Adv. Mater 2010, 22(20), P. E156-9.
7. Weber A., Mainz R., Schock H.W. On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum. J. Appl. Phys, 2010, 107(1), P. 013516.
8. Mitzi D.B., Gunawan O.i., et al. The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells, 2011,95(6), P. 1421–1436.
9. Jiang C., Lee J.-S., Talapin D.V. Soluble Precursors for CuInSe2, CuIn1−xGaxSe2, and Cu2ZnSn(S,Se)4 Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands. J. Am. Chem. Soc, 2012, 134(11), P. 5010–5013.
10. Yang W., Duan H.-S., et al. Novel Solution Processing of High-Efficiency Earth-Abundant Cu2ZnSn(S,Se)4Solar Cells. Adv. Mate2012, 24(47), P. 6323–6329.
11. Fischereder A., Rath T., et al. Investigation of Cu2ZnSnS4 Formation from Metal Salts and Thioacetamide. Chem. Mater, 2010, 22(11), P. 3399–3406.
Review
For citations:
Sripan Ch., Viswanath A., Ganesan R. Effect of excess selenium in the formation of Cu2Zn1.5Sn1.2(S0.9+Se0.1)4 alloys for solar cell applications. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):509-512. https://doi.org/10.17586/2220-8054-2016-7-3-509-512