Titanium dioxide supported ruthenium nanoparticles for carbon sequestration reaction
https://doi.org/10.17586/2220-8054-2016-7-3-513-517
Abstract
Ru metal doped TiO2 nanoparticles were synthesized using a sol gel method with and without ionic liquid. Ru metal is well dispersed while utilizing ionic liquid as reaction medium for catalyst synthesis with respect to Ru–TiO2 catalyst. A TEM image for Ru–TiO2–IL catalyst reveals, stable, well dispersed and agglomeration free Ru metal doped TiO2 nanoparticles. CO2 Hydrogenation reaction on task specific ionic liquid medium, offered the formic acid in high TON/TOF value with added advantage of 5 times catalyst recycling.
Keywords
About the Authors
Praveenkumar Ramprakash UpadhyayIndia
Neemrana (Rajasthan), 301705
Vivek Srivastava
India
Neemrana (Rajasthan), 301705
References
1. Sakakura T., Choi J.C., Yasuda H. Transformation of Carbon Dioxide Chem. Rev., 2007, 107 (6), P. 2365–2387.
2. Thampi K.R., Kiwi J., Gratzel M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature, 1987, 327 (6122), P. 506–508.
3. Zhang Z.F., Xie E., Li W.J., Hu S.Q., Song J.L., Jiang T., Han B.X. Hydrogenation of Carbon Dioxide is Promoted by a Task-Specific Ionic Liquid. Angew. Chem. Int. Edit., 2008, 47 (6), P. 1127–1129.
4. Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc., 2004, 15 (3), P. 341–350.
5. Migowski P., Dupont J. Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids. Chem. Eur. J., 2007, 13 (1), P. 32–39.
6. Antonietti M., Kuang D.B., Smarsly B., Yong Z. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Edit., 2004, 43 (38) P. 4988–4992.
7. Dupont J., Fonseca G.S., Umpierre A.P. Fichtner P.F.P., Teixeira S.R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recyclable Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem. Soc., 2002, 124 (16), P. 4228–4229.
8. Scheeren C.W., Machado G., Dupont J., Fichtner P.F.P., Texeira S.R. Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids: Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions. Inorg. Chem., 2003, 42 (15), P. 4738–4742.
9. Scheeren C.W., Machado G., Texeira S.R., Morais J., Domingos J.B., Dupont J. Synthesis and Characterization of Pt(0) Nanoparticles in Imidazolium Ionic Liquids. J. Phys. Chem. B, 2006, 110 (26), P. 13011–13020.
10. Cassol C.C., Umpierre A.P., Machado G., Wolke S.I., Dupont J. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction. J. Am. Chem. Soc., 2005, 127 (10), P. 3298–3299.
11. Silveira E.T., Umpierre A.P., Rossi L.M., Machado G., Morais J., Soares G.V., Baumvol I.L.R., Teixeira S.R., Fichtner P.F.P., Dupont J. The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids. Chem. Eur. J., 2004, 10 (15) P. 3734–3740.
12. Srivastava V. In Situ Generation of Ru Nanoparticles to Catalyze CO2 Hydrogenation to Formic Acid. Catalysis letters, 2014, 144 (10), P. 1745–1750.
13. Srivastava V. Ru-exchanged MMT Clay with Functionalized Ionic Liquid for Selective Hydrogenation of CO2 to Formic acid. Catalysis letters, 2014, 144 (12) P. 2221–2226.
14. Wang Y., Zhang R., Li J., Li L., Lin S. First-principles study on transition metal-doped anatase TiO2. Nanoscale Research Letters, 2014, 9 (1), P. 46.
15. Bagheri S., Chekin F., Hamid S.B.A. Cobalt Doped Titanium Dioxide Nanoparticles: Synthesis, Characterization and Electrocatalytic Study. J. Chin. Chem. Soc., 2014, 61 (6), P. 702–706.
Review
For citations:
Upadhyay P.R., Srivastava V. Titanium dioxide supported ruthenium nanoparticles for carbon sequestration reaction. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):513-517. https://doi.org/10.17586/2220-8054-2016-7-3-513-517