Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

“Superradiant” phase transition in the presence of optical collisions

Abstract

A problem of high-temperature phase transitions for coupled (dressed) atom-light states and polaritons is considered. An achievement of thermodynamically equilibrium phase for such a states is possible under interaction between rubidium atoms and quantum irradiation in the presence of optical collisions (OCs) with ultra-high pressure buffer gas particles being under high temperatures (up to 530 K). Special metallic  micro-waveguides permitting  photon trapping are proposed for purpose of the enhancement of atom-field interaction. A photonic phase transition to the superradiant state, determined by the equilibrium state of coupled system, was theoretically predicted. It have been  shown that under large negative atom-light detunings and certain waveguide parameters photon-like low branch (LB) polaritons undergo high-temperature phase transition to  condensate (superfluid) state.

About the Authors

I. Yu. Chestnov
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Chestnov Igor Yu., PhD Student,

Vladimir.



A. P. Alodjants
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Alodjants Alexander P., Doctor of Science, Associate Professor, Professor,

Vladimir.



S. M. Arakelian
Vladimir State University named after A. G. and N. G. Stoletovs
Russian Federation

Arakelian Sergei M., Doctor of Science, Professor, Professor, 

Vladimir.



References

1. Л.П. Питаевский. Конденсаты Бозе-Эйнштейна в поле лазерного излучения. УФН, 2006, 176(4), 345-364; M. Greiner, O. Mandel, T. Esslinger T. W. Hänsch and I. Bloch. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 2002, 415, 39-52.

2. J. J. Hopfield. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958, 112(5), 1555-1567; В.М. Агранович. Дисперсия электромагнитных волн в кристаллах. ЖЭТФ, 1959, 37(2), 430-441.

3. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto. Condensation of Semiconductor Microcavity Exciton Polaritons. Science, 2002, 298(1), 199-202; H. Deng, D. Press, S. Götzinger, G. S. Solomon. Quantum Degenerate Exciton-Polaritons in Thermal Equilibrium. Phys. Rev. Lett., 2006, 97, 146402; J. Kasprzak, M. Richard, S. Kundermann et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443. 409-414.

4. S. Utsunomiya, L. Tian, G. Roumpos et al. Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Phys., 2008, 4, 700-705; A. Amo, D. Sanvitto, F. P. Laussy et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature, 2009, 457, 291-295.

5. D. Snoke, A. Kavokin. Are we there yet? Progress in condensation of quasiparticles. Solid State Communications, 2007, 144 357–358.

6. Cohen-Tannoudji C., J. Dupont-Roc, G. Grynberg. Atom-Photon Interactions: Basic Processes and Aplications. Wiley, New York, 2004, 656 p.

7. R. E. M. Hedges, D. L. Drummond, and A. Gallagher. Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials. Phys. Rev. A, 1972, 6(4), 1519-1544; N. Allard and J. Kielkopf. The effect of neutral nonresonant collisions on atomic spectral lines. Rev. Mod. Phys., 1982, 54(4), 1103-1182; A. Royer. Shift, width, and asymmetry of pressure-broadened spectral lines at intermediate densities. Phys. Rev. A, 1980, 22(4), 1625 (1980).

8. Лисица В. С. Яковленко С. И. Оптические и радиационные столкновения. ЖЭТФ., 1974, 66(5), 1550-1559; Яковленко С.И. Поглощение мощного резонансного излучения при столкновительном уширении линий. УФН., 1982, 136(4), 594-620.

9. U. Vogl, M. Weitz. Spectroscopy of atomic rubidium at 500-bar buffer gas pressure: Approaching the thermal equilibrium of dressed atom-light states. Phys.Rev.A, 2008, 78(1), 011401(R).

10. I. Yu. Chestnov, A. P. Alodjants, S. M. Arakelian, J. Nipper, U. Vogl, F. Vewinger, M. Weitz. Thermalization of coupled atom-light states in the presence of optical collisions. Phys. Rev. A, 2010, 81, 053843.

11. Р.В. Марков, А.И. Пархоменко, А.И. Плеханов, А.М. Шалагин. Генерация на резонансном переходе атомов натрия при нерезонансном оптическом возбуждении. ЖЭТФ, 2009, 136(2), 211-223.

12. A. P. Alodjants, I. Yu. Chestnov, S. M. Arakelian. High-temperature phase transition in the coupled atom-light system in the presence of optical collisions. Phys. Rev. A, 2011, 83, 053802.

13. U. Vogl, A. Saß, F. Vewinger, A. Solovev, Y. Mei, O. G. Schmidt. Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment. Phys. Rev. A, 2011, 83, 053403.

14. O. G. Schmidt, K. Eberl. Nanotechnology: Thin solid films roll up into nanotubes. Nature, 2001, 410(2), 168-169.

15. Е.М, Лифшиц, Л. П. Питаевский. Теоретическая физика. Том 9. Наука, М., 1978, 448 с.

16. K. Hepp, E. H. Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. Annals of Physics, 1973, 76(2), 360-404; K. Rzazewski, K. Wodkiewicz, W. Zakowicz. Phase Transitions, Two-Level Atoms, and the A2 Term. Phys. Rev. Lett., 1975, 35(7), 432-434; G. Liberti, R. L. Zaffino. Critical properties of two-level atom systems interacting with a radiation field. Phys. Rev. A, 2004, 70(3), 033808.

17. Y. K. Wang and F. T. Hioe. Phase Transition in the Dicke Model of Superradiance. Phys. Rev. A, 1973, 7(3), 831-83.

18. P. R. Eastham and P. B. Littlewood. The thermal equilibrium of a model microcavity Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity. Phys. Rev. B, 2001, 64(23), 235101.

19. R. F. Harrington, Time-Harmonic Electromagnetic Fields. Wiley, New York, 2001, 490 p.

20. Y. Louyer, D. Meschede, and A. Rauschenbeutel. Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics. Phys. Rev. A, 2005, 72(3), 031801(R).


Review

For citations:


Chestnov I.Yu., Alodjants A.P., Arakelian S.M. “Superradiant” phase transition in the presence of optical collisions. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(2):73-84. (In Russ.)

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)