Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Model of non-axisymmetric flow in nanotube

Abstract

The asymmetric Stokes flow in a circular cylinder due to a rotlet is considered. This is a model for nanotube flow induced by a small rotating particle. The 3D Stokes and continuity equations are reduced to boundary problems for two scalar functions. Analytical solutions in terms of the Fourier transform is obtained.

Keywords


About the Author

I. V. Blinova
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

49 Kronverkskiy, Saint Petersburg



References

1. Li D. Encyclopedia of Microfluidics and Nanofluidics. Springer, New York (2008).

2. Rivera J. L., Starr F. W. Rapid transport of water via carbon nanotube. J.Phys. Chem. C, 114, P. 3737– 3742 (2010).

3. Kang W., Landman U. Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges. Phys. Rev. Lett., 98, P. 064504/1-4 (2007).

4. Chivilikhin S. A., Popov I. Yu., Gusarov V. V., Svitenkov A. I. Model of fluid flow in a nano-channel. Russian J. Math. Phys., 15, P. 410–412 (2007).

5. Maslov V. P. Superfluidity of classical liquid in a nanotube for even and odd numbers of neutrons in a molecule. Theor. Math. Phys., 153, P. 1677–1696 (2007).

6. Belonenko M. B., Chivilikhin S. A., Gusarov V. V., Popov I. Yu., Rodygina O. A. Soliton-induced flow in carbon nanotube. Europhys. Lett. 101, P. 66001/1-3 (2013).

7. Popov I. Yu. Statistical derivation of modified hydrodynamic equations for nanotube flows. Physica Scripta, 83, P. 045601/1-3 (2011).

8. Chivilikhin S. A., Gusarov V. V., Popov I. Yu. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Phys. Chem. Math., 3(1), P. 7–26 (2012).

9. Pozrikidis C. Computation of periodic Green’s functions of Stokes flow. J.Eng. Math. 38, P. 79–96 (1996).

10. Blake J. R., Chwang A. T. Fundamental singularities of viscous flow. Part I: The image systems in the vicinity of a stationary no-slip boundary. J.Eng. Math. 8(1), P. 23–29 (1974).

11. Popov I. Yu. Operator extension theory and eddies in creeping flow. Phys. Scripta. 47, P. 682–686 (1993).

12. Popov I. Yu. Stokeslet and the operator extension theory. Rev. Matem. Univ. Compl. Madrid. 9, P. 235– 258 (1996).

13. Gugel Yu. V., Popov I. Yu., Popova S. L. Hydrotron: creep and slip. Fluid Dyn. Res. 18, P. 199–210 (1996).

14. Hackborn W. W. Asymmetric Stokes flow between parallel planes due to a rotlat. J. Fluid Mech. 218, P. 531–546 (1990).

15. Ranger K. B. Intl. J. Multiphase Flow., 4, P. 263 (1978).


Review

For citations:


Blinova I.V. Model of non-axisymmetric flow in nanotube. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(3):320-323.

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)