Ultrashort optical pulse propagation in a double layer of graphene boron nitride with accounting the material dispersion
Abstract
The propagation of ultra-short optical pulses in a thin film created by graphene grown on a boron nitride base will be considered, taking into account the environment’s dispersion characteristics, electron conduction in such a system described by the framework of an effective long-wave Hamiltonian for low-temperature media. The electromagnetic field is taken as classical Maxwell’s. We reveal the dependence of the electric field on the maximum amplitude of ultra-short optical pulses, as well as on empirical dispersion constants.
About the Authors
A. V. PakRussian Federation
400062, Volgograd
M. B. Belonenko
Russian Federation
400048, Volgograd
O. Y. Tuzalina
Russian Federation
400002,Volgograd
References
1. Ci L., Song L., Jin C., Jariwala D., Wu D., Li Y.J., Srivastava A., Wang Z.F., Storr K., Balicas L., Liu F., and Ajayan P.M. Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 9, P. 430–435 (2010). doi:10.1038/nmat2711.
2. Giovannetti G., Khomyakov P.A., Brocks G., Kelly P.J., and Van den Brink J., Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physics Review, B 76, P. 073103 (2007).
3. Greber T. Graphene and boron nitride single layers. In: Sattler K., editor. The Handbook of Nanophysics. Taylor and Francis Books, Inc, Oxfordshire (2010).
4. Partoens B., Peeters F. M. From graphene to graphite: electronic structure around the K point. Physical Review, B 74, P. 075404-11 (2006).
5. Avetisyan A. A., Partoens B., and Peeters F. M. Stacking order dependent electric field tuning of the band gap in graphene multilayers. Physical Review, B 79, P. 035421 (2009).
6. Avetisyan A. A., Partoens B., and Peeters F. M. Electric field control of the band gap and Fermi energy in graphene multilayers by top end back gates. Phys. Rev., B 80, P. 195401 (2009).
7. Wakabayashi K., Takane Y., Sigrist M. Perfectly conducting channel and universality crossover in disordered graphene nanoribbons. Physical Review Letters, 99, P. 036601 (2007).
8. Blase X., Rubio A., Louie S.G., and Cohen M.L. Stability and band-gap constancy of boron-nitride nanotubes. Europhys Letters, 28(6), P. 355–340 (1994).
9. Hern´ andez E., Goze C., Bernier P., and Rubio A. Elastic properties of C and BxCyNz composite nanotubes. Physical Review Letters, 80(20), P. 4502–4505 (1998).
10. Chen Y., Zou J., Campbell S.J., and Le Caer G. Boron nitride nanotubes: Pronounced resistance to oxidation. Applied Physics Lettes, 84, P. 2430–2432 (2004).
11. Suryavanshi A. P., Yu M., Wen J., Tang C., and Bando Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Applied Physics Letters, 84, P. 2527–2529 (2004).
12. Breshenan M.S., Hollander M.J., Wetherington M. and al. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-perfomance devices. ACS Nano, 6(6), P. 5234-5241 (2012). DOI: 10.1021/nn300996t.
13. Xue J., Sanchez-Yamagishi J., Bulmash D., Jacquod Ph., Deshpande A., Watanabe K., Taniguchi T., Jarillo-Herrero P., LeRoy B. J. Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Materials, 10, P. 282–285 (2011).
14. Cortijo A., Guinea F., Vozmediano M.A.H., Geometrical and topological aspects of graphene and related materials. arXiv: 1112.2054v1 (2011).
15. Landau L. D., Lifshitz E. M. Theoretical physics, T. II. Field theory, Science, Moscow, 512 p. (1988).
16. Bakhvalov N.S. Calculus of approximations (analysis, algebra, ordinary differential equations). Science, Moscow, 632 p. (1975).
Review
For citations:
Pak A.V., Belonenko M.B., Tuzalina O.Y. Ultrashort optical pulse propagation in a double layer of graphene boron nitride with accounting the material dispersion. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(3):329-335.