Aluminum and antimony-doped zinc oxide nanorod arrays synthesized on zinc foil by hydrothermal route
Abstract
Aluminum and antimony-doped zinc oxide nanostructures, oriented on the zinc metal substrates were obtained via hydrothermal (HT) method. It is established that the optimal synthesis parameters (T = 180 ° C, t = 6 h, the solution concentration of EDA C = 4.5 M) promotes the formation of less defective and more ordered structures. According to XRD, photoluminescence and Raman spectroscopy the properties of ZnO nanorods, doped with aluminum or antimony vary depending on the concentration of dopants.
About the Authors
A. I. GavrilovRussian Federation
Gavrilov Anton I., MSc, PhD Student,
Moscow.
A. N. Baranov
Russian Federation
Baranov Andrey N., PhD,
Moscow.
B. R. Churagulov
Russian Federation
Churagulov Bulat R., Doctor of Chemistry, Prof.,
Moscow.
B. P. Mihaylov
Russian Federation
Mihaylov Boris P., Doctor of Science,
Moscow.
References
1. Huang M. H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292, 1897-1899.
2. Rodriguez J. A., Jirsak T., Dvorak J., Sambasivan S., Fischer D. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3. J. Phys. Chem. B, 2000, 104, 319-328.
3. Willander M. Zinc oxide nanowires: Controlled low temperature growth and some electrochemical and optical nano-devices. J. of Material Chemisrty, 2009, 19, 1006-1018.
4. Liu C. H., Zapien J. A., Yao Y., Meng X. M., Lee C. S., Fan S. S., Lifshitz Y., Lee S. T. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv. Mater, 2003, 15, 838-841.
5. Law M., Greene L. E., Johnson J. C., Saykally R., Yang P. D. Nanowire dye-sensitized solar cells. Nat. Mater, 2005, 4, 455-459.
6. Hariharan C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A: Gen. 2006, 304, 55-61.
7. Aoki T., Shimizu Y., Miyake A., Nakamura A., Nakanishi Y., Hatanaka Y. p-Type ZnO Layer Formation by Excimer Laser Doping. Phys. Status Solidi (b), 2002, 229, 911-914.
8. Zhong Lin Wang. Nanostructures of Zinc Oxide. Materials Today, 2004, 6, 26 – 33.
9. Min Guo, Peng Diao, Shengmin Cai. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. J. Solid State Chem, 2005, 178. 1864–1873.
10. Лякишев Н.П., Банных О.А. Диаграммы состояния двойных металлических систем. Издательство «Машиностроение», Москва, 2000.
11. А.И.Гаврилов, А.Н.Баранов, Б.Р.Чурагулов, Ю.Д. Третьяков. Получение ориентированных наностержней оксида цинка на подложках из металлического цинка гидротермальной обработкой. Доклады Академии Наук. Серия Химия, 2010, 432 (4), 486 - 489.
12. A. Dev, S. Kar, S. Chakrabarti, S. Chaudhuri. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology, 2006. 17, 1533-1540.
13. Damen T.C., Porto S.P.S., Tell B. Raman Effect in Zinc Oxide. Phys. Rev., 1966, 142, 570-574.
14. Liang J., Liu J., Xie Q., Bai S., Yu W., Qian Y. Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles. J. Phys. Chem. B, 2005, 109, 9463-9467.
15. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li Appl. Phys. Lett., 2003, 83, 1974-1977.
16. Kortounova E.V., Lyutin V.I., Dubovskaya V.D. and Chvanski P.P. The growth of zinc oxide crystals with impurities. High Pressure Res., 2001, 20, 175-183.
17. T. Viseu, J. A. de Campos, A. G. Rolo, T. de Lacerda-Aroso, M. F. Cerqueira, E. Alves. ZnO Thin Films Implanted with Al, Sb and P: Optical, Structural and Electrical Characterization. Journal of Nanoscience and Nanotechnology, 2009, 9, 3574-3577.
Review
For citations:
Gavrilov A.I., Baranov A.N., Churagulov B.R., Mihaylov B.P. Aluminum and antimony-doped zinc oxide nanorod arrays synthesized on zinc foil by hydrothermal route. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(2):90-99. (In Russ.)