Structural properties of cobalt substituted barium hexaferrite nanoparticles prepared by a thermal treatment method
Abstract
A series of M-type hexagonal ferrites with BaCoxFe12−xO19 (x = 2.0, 3.0) composition were synthesized using a simple heat treatment method. The aqueous solution, containing metal nitrates and polyvinyle pyrrolidone (PVP) as a capping agent was used to prepare M-type barium hexferrite nanoparticles. The prepared hexaferrite particles were calcined at microwave frequency (2.45 GHz, power 900W, 5 min) as well as at 650 ˚ C temperature. The structural properties of the samples were investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD pattern shows the pure M-phase. The particle size of the powder prepared by this method ranged from 20 nm to 27 nm. The thermal properties of the sample were investigated by thermogravimetric Analysis (TGA), which confirmed the thermal stability of the barium hexaferrite sample prepared by the heat treatment method.
About the Authors
C. C. ChauhanIndia
Department of Physics
Ahmedabad 382 481, Gujarat
R. B. Jotania
India
Department of Physics, University School of Sciences
Navrangpura Ahmedabad 380 009, Gujarat
K. R. Jotania
India
Department of Physcis, Faculty of Science
Vadodara 390 002, Gujarat
References
1. Salunkhe M.Y., Kulkarni, D.K. Structural, magnetic and microstructural study of Sr2Ni2Fe12O22. J. Magn. Magn. Mater., 279, P. 64–68 (2004).
2. Smit J., Wijn H.P.J., in: Ferrites, Philip’s Tech. Library, New York (1959).
3. Zhang Haijun, Yao Xi, Zhang Liangying, The Preparation and microwave properties of BaZn2−xCo2Fe16O27 ferrite obtained by a sol-gel process, Ceram. Int., 28(1), p. 171–175 (2002).
4. Eugene P., et al., Chem. Sustain. Dev. 10, P. 161 (2002).
5. Carp O., Barjega R., Segal E., Brezeanu M., Thermo-chem. Acta, P. 57–62 (1998).
6. Pullar R. C., Bhattacharya A. K., Crystallisation of hexagonal M-ferrite from a stochiometric sol-gel precursor without formation of α – Fe2O4 intermediate phase, Mater. Lett. 537, P. 537–542 (2002).
7. Dho J., Lee E. K., Park J. Y., Hur N. H., Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19, J. Magn. Magn. Mater., 285, P. 164–168 (2005).
8. Vishwanathan B., Murthy V. R. K., Ferrite Materials; Science and Technology. Narosa publishing house, New Delhi, U. P. (1990).
9. Snelling E .C., Soft Ferrites/Properties and Appllication, second ed. Butter Worths, London (1988).
10. Morisako A., Matsumoto M., Naoe M., The effect of oxygen gas pressure on Ba-ferrite sputtered films for perpendicular magnetic recording media, IEEE Trans. Magn., 24(6), P. 3024–3026 (1988).
11. Hylton T. L., Parker M. A., Ullah M., Coffey K. R., Umphress R., Haward J. K., Ba ferrite thin film media for high density logitudinal recording media, J. Appl. Phys., 75(10), P. 5960–5965 (1994).
12. Niesen T. P., M., de Guire, Deposition of ceramic thin films at low temperatures from aqueous solutions, J. Electroceram., 6, P. 169–207 (2001).
13. He H. Y., preheating effects on the particle size and anisotropy of M-type BaAl2Fe10O19 powders prepared via sol gel method, Advances in Natural and Applied Sciences, 3(1), P. 211–215 (2009).
14. Temuujin J. J., Aooyama M., Senna M., Masuko T., Ando C., Kishi, H. J. Solid State Chem., 177, P. 221 (2004).
Review
For citations:
Chauhan C.C., Jotania R.B., Jotania K.R. Structural properties of cobalt substituted barium hexaferrite nanoparticles prepared by a thermal treatment method. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(3):363-369.