Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Dielectric Waveguide Optimization for the Enhancement of TE-Polarization Transmission of Plasmonics-Based MSM-PD

Abstract

In this paper, we use the finite difference time-domain (FDTD) method to optimize the TE-polarized light transmission of a metal-semiconductor-metal photodetector (MSM-PD) employing a dielectric waveguide on top of metal nano-gratings. Simulation results demonstrate that the funneling transmission of the TE-polarized light through the nanoslit of the MSM-PD structure is highly dependent on the structure geometries, such as the waveguide and nano-grating heights. We also demonstrate that adding a dielectric waveguide layer on top of the nano-metal gratings supports both the TM- and TE polarizations, and enhances the light transmission for TE-polarization around 3-times in comparison with conventional plasmonics MSM- PD structures.

About the Authors

Ayman Karar
Edith Cowan University
Australia

Electron Science Research Institute



Chee Leong Tan
Gwangju Institute of Science and Technology (GIST)
Korea, Republic of

School of Photonics Science

Gwangju



Kamal Alameh
Edith Cowan University; Gwangju Institute of Science and Technology (GIST)
Australia

Electron Science Research Institute, AU; 

Department of Nanobio Materials and Electronics, World Class University (WCU), GIST, Republic of Korea



Yong Tak Lee
Gwangju Institute of Science and Technology (GIST)
Korea, Republic of

School of Photonics Science, GIST; Department of Information and Communications, GIST; Department of Nanobio Materials and Electronics, World Class University (WCU), GIST

Gwangju



References

1. Soole.J. and Schumacher. H., InGaAs Metal-Semiconductor-Metal Photodetectors for Long Wavelength Optical Communications. IEEE J. Q. Elec., 27(3), P. 737–752 (1991).

2. Liu. M.Y. and Chou. S.Y., Internal emission metal-semiconductor-metal photodetectors on Si and GaAs for 1.3 µm detection. Appl. Phys. Lett., 66, P. 2673–2675 (1995).

3. Rogers. D. L., Integrated Optical Receivers using MSM Detectors. J. Lightwave. Technol., 9(Dec.), (1991).

4. Averine. S., Chan. Y. C., and Lam. Y. L., Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures. Solid-State Electron., 45(Mar.), P. 441–446 (2001).

5. Burm. J., Litvin. K. I., Schaff. W. J., and Eastman. L. F., Optimization of high-speed metal-semiconductor-metal photodetectors. IEEE Photon. Technol. Lett., 6, P. 722–724 (1994).

6. Chou. S. Y., Liu. Y., and Fischer. P. B., Fabrication of sub-50 nm finger spacing and width high-speed metal-semiconductor-metal photodetectors using high-resolution electron beam lithography and molecular beam epitaxy. J. Vac. Sci. Technol, 9(Nov.), P. 2920–2924 (1991).

7. Ebbesen. T. W., Lezec. H. J., Ghaemi. H. F., Thio. T., and Wolff. P. A., Extraordinary optical transmission throught sub-wavelength hole arrays. Nature, 391(Feb. 12), P. 667–669 (1998).

8. Mart´ ın-Moreno. L., Garc´ ıa-Vidal. F. J., Lezec. H. J., Degiron. A., and Ebbesen. T. W., Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations. Phys .Rev. Lett., 90(25 Apr.), P. 167401 (2003).

9. Sondergaard. T., Bozhevolnyi. S. I., Novikov. S. M., Beermann. J., Devaux. E., and Ebbesen. T. W., Extraordinary optical transmission enhanced by nanofocusing. Nano Lett., 10(Aug. 11), P. 3123-8 (2010).

10. Shackleford. J. A., Grote. R., Currie. M., Spanier. J. E., and Nabet. B., Integrated plasmonic lens photodetector. Appl. Phys. Lett., 94(Feb. 23), P. 083501, P. 1–3 (2009).

11. Dunbar. L. A., Guillaume. M., Len-Prez. F. D., Santschi. C., Grenet. E., Eckert. R., Lpez-Tejeira. F., Garca-Vidal. F. J., Martn-Moreno. L., and Stanley. R. P., Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector. Appl. Phys. Lett., 95(9 Jul.), P. 011113 (2009).

12. Karar. A., Das. N., Tan. C.L., Alameh. K., Lee. Y.T., and Karouta. F., High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors. Appl. Phys. Lett., 99, P. 33112–33112 (2011).

13. Ren. F.F., Ang. K.W., Ye. J, Yu., M, Lo. G.Q., and Kwong. D.L., Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector. Nano Lett., 11, P. 1289-93 (2011).

14. Collin. S., Fabrice. P., Teissier. R., and Pelouard. J.-L., Efficient light absorption in metal– semiconductor–metal nanostructures. Appl. Phys. Lett., 85(Jul.), P. 194–196 (2004).

15. Lee. S. C., Krishna. S., and Brueck. S. R. J., Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors. Appl. Phys. Lett., 97(Jul. 12), P. 021112 (2010).

16. Nikitin. A.Yu., Garcia-Vidal. F.J., and Martin-Moreno. L., Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes. J. Opt. A: Pure Appl. Opt., 11 (2009).

17. Guillaume. M., Nikitin. A. Yu., Klein. M.J.K., Dunbar. L.A., Spassov. V., Eckert. R., Martn-Moreno. L., Garca-Vidal. F.J. and Stanley. R.P., Observation of enhanced transmission for s-polarized light through a subwavelength slit. Opt. Express, 18(9), P. 9722–9727 (2010).


Review

For citations:


Karar A., Tan Ch.L., Alameh K., Lee Y.T. Dielectric Waveguide Optimization for the Enhancement of TE-Polarization Transmission of Plasmonics-Based MSM-PD. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(3):378-386.

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)