Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A graphene-organic composite as a fluorescent chemosensor for Ag+

https://doi.org/10.17586/2220-8054-2016-7-3-542-546

Abstract

A novel reduced graphene oxide (rGO) decorated organic binol based receptor ((S)-1) has been designed and synthesized. The resulting nanocomposite (rGO–(S)-1) material was then utilized as a selective fluorescent chemosensor for Ag+ ion in aqueous media at physiological pH. In addition, the nanocomposite showed no cross-reaction with any of the potential interfering metal ions. The reduced graphene oxideorganic nanocomposite was characterized using various spectroscopic, microscopic and analytical studies.

About the Authors

N. Bhuvanesh
Karunya University
India

Department of Chemistry

Karunya Nagar, Coimbatore, TamilNadu, 641114



K. Velmurugan
Karunya University
India

Department of Chemistry

Karunya Nagar, Coimbatore, TamilNadu, 641114



S. Suresh
Karunya University
India

Department of Chemistry

Karunya Nagar, Coimbatore, TamilNadu, 641114



T. Sakthivel
Karunya University
India

Department of Nanoscience and Technology

Karunya Nagar, Coimbatore, TamilNadu, 641114



R. Nandhakumar
Karunya University
India

Department of Chemistry

Karunya Nagar, Coimbatore, TamilNadu, 641114



References

1. Luo J., Jang H.D., Huang J. Effect of Sheet Morphology on the Scalability of Graphene-Based Ultracapacitors. ACS Nano, 2013, 7(2), P. 1464–1471.

2. Mao L., Zhang K., Chan H.S.O., Wu J. Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem., 2012, 22, P. 80–85.

3. Cui Y., Cheng Q.Y., Wu H., Wei Z., Han B.H. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors. Nanoscale, 2013, 5, P. 8367–8374.

4. Xiang H. F., Li, Z. D., Xie.K., Jiang J.Z., Chen J.J., Lian P.C., Wu J.S., Yu Y., Wang H.H. Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv., 2012, 2, P. 6792–6799.

5. Wu Z.S., Pei S., Ren W., Tang D., Gao L., Liu B., Li F., Liu C., Cheng H.M. Field emission of single-layer graphene films prepared by electrophoretic deposition. M. Adv. Mater., 2009, 21, P. 1756–1760.

6. Yoo E., Okata T., Akita T., Kohyama M., Nakamura J., Honma I. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Lett., 2009, 9(6), P. 2255-9.

7. Seger B., Kamat. Thickness-Controlled Graphene Hybrid Interface for Highly. J. Phys. Chem. C, 2000, 113, P. 7990–7995.

8. Liu Z., Tabakman S., Welsher K., Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. J. Am. Chem. Soc., 2008, 130, P. 10876–10877.

9. Mohanty N., Berry V., A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Nano Lett., 2008, 8, P. 4469–4476.

10. Jun Jeon H., Chul Yi S., Geun Oh S. Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomed. Mater, 2000, 52, P. 662.

11. Lansdown A.B.G. Silver dressings. J. Wound Care, 2002, 11, P. 125–130.

12. Chatterjee A., Santra M., Won N., Kim S., Kim J.K., Kim S.B., Ahn K.A. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J. Am. Chem. Soc., 2009, 131(6), P. 2040–2041.

13. Purcell T.W., Peters J.J. Sources of silver in the environment. Environ. Toxicol. Chem, 1998, 17, P. 539.

14. Park K.S., Lee J.Y., Park H.G. Mismatched pyrrolo-dC-modified duplex DNA as a novel probe for sensitive detection of silver ions. Chem. Commun., 2012, 48, P. 4549–4551.

15. Hook S.E., Fisher N.S. Sublethal effects of silver in zooplankton: importance of exposure pathways and implications for toxicity testing. Environ.Toxicol. Chem, 2001, 20(3), P. 568–574.

16. He X., Qing Z., Wang K., Zou Z., Shi H., Huang J. Engineering a unimolecular multifunctional DNA probe for analysis of Hg2+ and Ag+. Anal.Methods, 2012, 4, P. 345–347.

17. Liau S.Y., Read D.C., Pugh W.H., Furr J.R., Russell A.D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial. Lett. Appl. Microbiol, 2003, 25, P. 279–283.

18. Barriada, J. L., Tappin A.D., Evans E.H., Acterberg E.P. Dissolved silver measurements in seawater. Trends Anal. Chem, 2007, 26, P. 809–817.

19. Kim J., Kim S., Lee S. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology, 2011, 5, P. 208–214.

20. Cao N., Yuan Z. Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. Nanomaterials, 2015, DOI 10.1155/2015/168125.

21. Wang F., Nandhakumar R., Hu Y., Kim D., Kim K.M., Yoon J. BINOL−Based Chiral Receptors as Fluorescent and Colorimetric Chemosensors for Amino Acids. J. Org. Chem., 2013, 78(22), P. 11571–11576.

22. Li G., Xu C. Hydrothermal synthesis of 3D NixCo1xS2 particles/graphene composite hydrogels for high performance supercapacitors. Carbon, 2015, 90, P. 44–52.

23. Zhao.Y., Song X., Song Q., Yin Z. A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm, 2012, 14, P. 6710–6719.


Review

For citations:


Bhuvanesh N., Velmurugan K., Suresh S., Sakthivel T., Nandhakumar R. A graphene-organic composite as a fluorescent chemosensor for Ag+. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):542-546. https://doi.org/10.17586/2220-8054-2016-7-3-542-546

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)