Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Observation of insulating and metallic-type behavior in Bi2Se3 transistor at room temperature

https://doi.org/10.17586/2220-8054-2016-7-3-565-568

Abstract

Topological insulators are a new class of electronic materials with promising device applications. In this work, multi-layer Bi2Se3 field effect transistors (FETs) are prepared by standard lithography followed by mechanical exfoliation method. Electrical characterization of the FET has been studied at room temperature. We observed both insulating and metallic-type transport behavior when device was gate-biased. Electron-phonon scattering plays a vital role in observing this behavior. We assume that this sort of behavior could be raised from the inherent metallic surface and semiconducting interior bulk properties of Bi2Se3.

About the Authors

V. Gunasekaran
Research Institute of Electrical Communication, Tohoku University
Japan

2-1-1, Katahira, Aoba-ku, Sendai 980-8577



G. H. Park
Research Institute of Electrical Communication, Tohoku University
Japan

2-1-1, Katahira, Aoba-ku, Sendai 980-8577



K. S. Kim
Research Institute of Electrical Communication, Tohoku University
Japan

2-1-1, Katahira, Aoba-ku, Sendai 980-8577



M. Suemitsu
Research Institute of Electrical Communication, Tohoku University
Japan

2-1-1, Katahira, Aoba-ku, Sendai 980-8577



H. Fukidome
Research Institute of Electrical Communication, Tohoku University
Japan

2-1-1, Katahira, Aoba-ku, Sendai 980-8577



References

1. Zhang H., Liu C.-X., et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6), P. 438–442.

2. Dresselhaus M.S., Chen G., et al. New directions for low-dimensional thermoelectric materials, Adv. Mater., 2007, 19, P. 1043– 1053.

3. Zhu H., Richter C.A., et al. Topological insulator Bi2Se3 nanowire high performance field-effect transistors. Sci. Rep., 2013, 3, P. 1757.

4. Jerng S.K., Joo K., et al. Ordered growth of topological insulator Bi2Se3 thin films on dielectric amorphous SiO2 by MBE. Nanoscale, 2013, 5, P. 10618–10622.

5. McIver J.W., Hsieh D., et al. Control over topological insulator photocurrents with light polarization. Nat. Nanotech, 2012, 7, P. 96–100.

6. Cho S., Butch N.P., Paglione J.P., Fuhrer M.S. Insulating Behavior in Ultrathin Bismuth Selenide Field Effect Transistors. Nano. Lett., 2011, 11, P. 1925–1927.

7. Kong D., Dang W., et al. Few-Layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett., 2010, 10, P. 2245–2250.

8. Novoselov K.S., Geim A.K., et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, P. 666–669.

9. Novoselov K.S., Jiang D.,et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, P. 10451–10453.

10. Liu X., Smith D.J., et al. Structural properties of Bi2Te3 and Bi2Se3 topological insulators grown by molecular beam epitaxy on GaAs (001) substrates. Appl. Phys. Lett., 2011, 99, P. 171903–171906.

11. Dang W.H., Peng H.L., et al. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett., 2010, 10, P. 2870–2876.

12. Zhang J., Peng Z.P., et al. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett., 2011, 11, P. 2407–2414.

13. Zhao S.Y.F., Beekman C., et al. Fabrication and characterization of topological insulator Bi2Se3 nanocrystals. Appl. Phys. Lett., 2011, 98, P. 141911.

14. Joen D.S., Burk D.E. MOSFET electron inversion layer mobilities-a physically based semi-empirical model for a wide temperature range. IEEE Trans. Elec. Dev., 1989, 36, P. 1515–1518.

15. Zhang Q., Iannaccone Q., Fiori G. Two-dimensional tunnel transistors based on Bi2Se3 thin film. IEEE Elec. Dev. Lett., 2014, 35(1).

16. Zhu H., Zhao E. Topological insulator Bi2Se3 nanowire field-effect transistors. ECS Transactions, 2014, 64(17), P. 51–59.

17. Liu M., Chang C., et al. Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two dimensional limit. Arxiv:1011.1055, 2010 [cond-mat.mtrl-sci].

18. Hirahara T., Sakamoto Y., et al. Anomalous transport in an n-type topological insulator ultrathin Bi2Se3 film. Phys. Rev. B., 2010, 82, P. 155309-6.

19. Steinberg H., Gardner D.R., Lee Y.S., Herrero P.J. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano. Lett., 2010, 12(10), P. 5032–5036.


Review

For citations:


Gunasekaran V., Park G.H., Kim K.S., Suemitsu M., Fukidome H. Observation of insulating and metallic-type behavior in Bi2Se3 transistor at room temperature. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):565-568. https://doi.org/10.17586/2220-8054-2016-7-3-565-568

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)