Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Asymmetric molecular diode energy calculation using Extended Hückel and Parametric method

https://doi.org/10.17586/2220-8054-2016-7-3-569-574

Abstract

The Electrical rectification properties of an asymmetric molecule’s amine group and nitro group has been studied by placing the compound between two gold electrodes and using Extended Hu¨ ckel, Parametric and non-equilibrium Green’s function (NEGF) formalisms. The conductance of the device falls exponentially with an increased number of CH2 moieties in the molecule. Current rectification was observed based on HOMO, LUMO gaps and potential drop across the molecules. The investigation of the spatial dispersion of frontier orbitals, the highest occupied molecular orbitals, lowest unoccupied molecular (HOMO-LUMO) of the molecule command the transmission of electrons in the molecule. The results demonstrate that, depending on the group of molecules and number of CH2 moieties present, current shipping from left side of device to right side of device based on orbital energy gaps. Our findings demonstrate that a true molecular diode can be created, and thus miniaturize the electronic circuit’s size to the Nano scale.

About the Authors

A. Mallaiah
Research Scholar, JNTUA
India

Anthapuramu, A.P



G. N. Swamy
VR Siddhartha Engineering College
India

Department of EI&E

Vijayawada, A.P



K. Padmapriya
JNTUK
Russian Federation

Department of ECE

Kakinada, A.P



References

1. Aviram A., Ratner M.A. Molecular rectifiers. Chemical Physics Letter, 1974, 29(2), P. 277–283.

2. Datta S. Nanoscale device modeling: the Green’s function method. Super lattices and Microstructures, 2000, 28(4), P. 253–278.

3. Datta S. Electronic Transport in Mesoscopic Systems Cambridge University Press. New York, 1996, 200 p.

4. Pradan M.R., Rajan E.G. A system engineering Approach to Molecular Electronics. International Journal of Computer applications, 2010, 3(8), P. 14–23.

5. Fobelets K., Ding P., et al. Electrical Transport in Polymer-Covered Silicon Nanowires. IEEE Transactions on Nanotechnology, 2012, 11(4), P. 661–665.

6. Jin-woo kim, Jeong-Hwan Kim, Russell Deaton. Programmable Construction of Nanostructures. IEEE Nanotechnology Magazine, 2012, 2(3), P. 19–23.

7. Xia Y., Chu Z., Hung W.N.N. An Integrated Optimization Approach for Nano hybrid Circuit Cell Mapping. IEEE Transactions on Nanotechnology, 2011, 10(6) P. 1275–1284.

8. Damle P.S., Ghosh A.W., Datta S. Unified description of molecular conduction: From molecules to metallic wires. Physics Review B, 2001, 64(20), P. 201403-1—201403-4

9. Datta S., Tian W., et al. Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy. Physics Review Letters, 1997, 79(13), P. 2530–2533.

10. Xue Y., Ratner M.A. Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop and high field transport. Physics Review B, 2003, 68, P. 115406

11. Song H., Kim Y., et al. Observation of molecular orbital gating Nature Letters, 2009, 462(24), P. 1039–1043.

12. Pecchia A., Di Carlo A., et al. Incoherent electron-phonon scattering in octanethiols. Nano Letters, 2004, 4(11), P. 2109–2114.

13. Wan C.C., Mozos J.-L., et al. Quantized conductance of Si atomic wires. Physical Review B, 1997, 56(8), P. R4351–R4354.

14. Wang Z., Kadohira T., Tada T., Watanabe S. Nonequilibrium Quantum Transport Properties of a Silver Atomic Switch. Nano Letters, 2007, 7(9), P. 2688–2692.

15. Xu Y., Shi X., et al. Conductance oscillation and quantization in monatomic AI wires. Journal of Physics: Condensed Matter, 2007, 19(5), P. 056010.

16. Parlato F.R., Barra L., et al. Single molecule break junctions based on a perylene diimide cyano functionalized derivative. Nanoscale Research Letter, 2015, 10, P. 305.

17. Yu Zhang L., Friesner R.A. Ab initio calculation of electronic coupling in the photosynthetic reaction center. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, P. 13603–13605.

18. Thompson M.A., Glendening E.D., Feller D. The Nature of K+/Crown Ether Interactions: A Hybrid Quantum MechanicalMolecular Mechanical Study. The Journal of Physical Chemistry, 1994, 98(41), P. 10465–10476.

19. Thompson M.A., Schenter G.K. Excited States of the Bacteriochlorophyll b Dimer of Rhodopseudomonas viridis: A QM/MM Study of the Photosynthetic Reaction Center That Includes MM Polarization. The Journal of Physical Chemistry, 1995, 99, P. 6374–6386.

20. Thompson M.A. QM/MMpol: A Consistent Model for Solute/Solvent Polarization. Application to the Aqueous Solvation and Spectroscopy of Formaldehyde, Acetaldehyde, and Acetone. The Journal of Physical Chemistry, 1996, 100, P. 14492–14507.

21. Dewar M.J.S., Zoebisch E., et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 1985, 107(13), P. 3902–3909.

22. Joachim C., Gimzewski J.K., Aviram A. Electronics using hybrid-molecular and mono-molecular devices Nature. Macmillan Magazines Limited, 2000, 408, P. 541–548.

23. Tian W., Datta S., et al. Conductance spectra of molecular wires. The Journal of Chemical Physics, 1998, 109(7) P. 2874–2882.

24. Xue Y.Q., Datta S., Ratner M.A. First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chemical Physics, 2002, 281(2), P. 151–170.

25. Yaliraki S.N., Roitberg A.E., et al. The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description. The Journal of chemical physics, 1999, 111(15), P. 6997–7002.

26. Ghosh A.W., Data S. Molecular conduction: paradigms and possibilities. Journal of Computational electronics, 2002, 1(4), P. 515–525.

27. Amgad Ahmed Ali Abdul Manaf Hashim. Density functional theory study of atomic layer deposition of zinc oxide on grapheme. Nanoscale Research Letters, 2015, 10, P. 299.


Review

For citations:


Mallaiah A., Swamy G.N., Padmapriya K. Asymmetric molecular diode energy calculation using Extended Hückel and Parametric method. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(3):569-574. https://doi.org/10.17586/2220-8054-2016-7-3-569-574

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)