Spatial-time pattern of electrical field of terahertz pulse in the far field
Abstract
The spatial and temporal dependence of the electric field amplitude of a terahertz (THz) pulse of several oscillations in the far field near the focal plane of a parabolic mirror was experimentally obtained. During experimentation a space-time anomaly was discovered in the diffraction patterns. In the wave front of the field the amplitude decreases to zero, and going through this spatial plane, the phase of oscillations changes, while in the integrated intensity, there is a dip in the curve. The results can be applied in pulsed terahertz optics and spectroscopy.
Keywords
About the Authors
M. S. KulyaRussian Federation
Saint Petersburg
Ya. V. Grachev
Russian Federation
Saint Petersburg
V. G. Bespalov
Russian Federation
Saint Petersburg
V. P. Kujanpaa
Finland
References
1. A. Glagolewa-Arkadiewa. Short electromagnetic waves of wave-length up to 82 microns. Nature, 113 (2844), P. 640 (1924).
2. X.C. Zhang, J. Xu. Introduction to THz wave photonics. NY., Springer, 246 pp. (2009).
3. Y.-S. Lee. Principles of terahertz science and technology. Springer Science+Business Media, LLC, XII, 340 pp. (2009).
4. B.B. Hu, X.C. Zhang, D.H. Auston. Terahertz Radiation Induced by Subbandgap Femtosecond Optical Exci tation of gas. Phys. Rev. Lett., 67, P. 2709 (1991).
5. V.G. Bespalov, V.N. Krylov, S.E. Putilin, D.I. Stasel’ko. Lasing in the far IR spectral range under femtosecond optical excitation of the inas semiconductor in a magnetic field. Optics and Spectroscopy, 93 (1), P. 148–152 (2002).
6. Q. Wu, X.C. Zhang. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett., 67, P. 3523 (1995).
7. D.J. Cook, R.M. Hochstrasser. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 25 (16), P. 1210–1212 (2000).
8. V.G. Bespalov. Superbroad-band pulsed radiation in the terahertz region of the spectrum: production and application. Journal of Optical Technology, 73 (11), P. 764-771 (2006).
9. N.N. Rozanov. On the diffraction of ultrashort pulses. Optics and Spectroscopy, 95 (2), P. 299–302 (2003).
10. L. Sereda, A. Ferrari, M. Bertolotti. Spectral and time evolution in diffraction from a slit of polychromatic and nonstationary plane waves. J. Opt. Soc. Am. B, 13, P. 1394–1402 (1996).
11. X. Jingzhou, W. Li, Y. Guozhen. Effects of spectral linewidth of ultrashort pulses on the spatiotemporal distribution of diffraction fields. Chinese Science Bulletin, 46 (11), P. 901 (2001).
12. A.A. Ezerskaya, D.V. Ivanov, V.G. Bespalov, S.A. Kozlov. Diffraction of single-period terahertz electromag netic waves. Journal of Optical Technology, 78 (8), P. 551–557 (2011).
13. C. Iaconis, I.A. Walmsley. Spectral phase Interferometry for direct electric-field reconstruction of ultrashort optical pulses. Optics Letters, 23, P. 792–794 (1998).
14. B.B. Hu, X.C. Zhang, D.H. Auston. Terahertz Radiation Induced by Subbandgap Femtosecond Optical Exci tation of gaas. Phys. Rev. Lett., 67, P. 2709 (1991).
15. N. Llombart, A. Neto. Thz Time-Domain Sensing: The Antenna Dispersion Problem and a Possible Solution. Terahertz Science and Technology, 2 (4), P. 416–423 (2012).
16. D.T.F. Marple, H. Ehrenreich. Dielectric Constant Behavior Near Band Edges in CdTe and Ge. Phys. Rev. Lett., 8, P. 87–89 (1962).
17. E.D. Palik, et al. Handbook of Optical Constants of Solids. Elsevier, 3227 pp. (1998).
18. M.S. Kulya, Ya.V. Grachev, V.G. Bespalov. Obtaining topograms with use of pulsed terahertz reflectometr. Nanosystems: Physics, Chemistry, Mathematics, 3 (5), P. 33–41 (2012).
19. J.W. Goodman. Introduction To Fourier Optics. McGraw-Hill, 441 pp. (1996).
Review
For citations:
Kulya M.S., Grachev Ya.V., Bespalov V.G., Kujanpaa V.P. Spatial-time pattern of electrical field of terahertz pulse in the far field. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(2):206-213.