Effect of high energy electron beam irradiation on the optical properties of nanocrystalline TiO2
Abstract
The effect of high energy electron beam irradiation on the optical properties of TiO2 nanoparticles was studied in order to improve the optical absorption performance and photo-activity. Electron beam irradiation may have resulted in size reduction, which in turn caused an increase of the optical band gap and photoluminescence intensity. Irradiation at a suitable dose rate was found to enhance the optical absorption performance and photo-activity of the tested TiO2 nanoparticles.
About the Authors
K. P. PriyankaIndia
Muvattupuzha - 686 661, Kerala
Sunny Joseph
Russian Federation
Muvattupuzha - 686 661, Kerala
AnuTresa Sunny
India
Kottayam - 686 560, Kerala
Thomas Varghese
Russian Federation
Muvattupuzha - 686 661, Kerala
References
1. W. Li, S.I. Shah, et al. Metalorganic chemical vapor deposition and characterization of TiO2 nanoparticles. Mater. Sci. Eng. B, 96, P. 247 (2002).
2. E. Traversa. Design of ceramic materials for chemical sensors with novel properties. J. Am. Ceram. Soc., 78 (1995)
3. H. Zhang, J.F. Banfield. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem., 8, P. 2073–2076 (1998).
4. H.Z. Zhang, J.F. Banfield. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2. J. Phys. Chem. B, 104, P. 3481 (2000).
5. A. Tsevis, N. Spanos, et al. Preparation and characterization of anatase powders. J. Chem. Soc. Faraday Trans., 94, P 295–300 (1998).
6. S. Sahni, B. Reddy, B. Murty. Influence parameters on the synthesis of nano-titania by sol-gel route. Mater. Sci. Eng. A, 452–453, P. 758–62 (2007).
7. F. Hossain, L. Sheppard, J. Nowotny, G. Murch. Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material. J Phys. Chem. Solids, 69, P. 1820–8 (2008).
8. L. Palmisano, V. Augugliaro, A. Sclafani, M. Schiavello. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem., 92, P. 6710 (1998).
9. L.Q. Jing, Z.L. Xu, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl. Surf. Sci., 180, P 308–314 (2001).
10. K.P. Priyanka, Sunny Joseph, et al. Surface Modification of Nanotitania Using High Energy Electron Beam Irradiation. Int. J. Emerg. Tech. Appl. Engg., 2 (11), P. 130–134 (2012).
11. T. Varghese, K.M. Balakrishna. Nanotechnology: An introduction to synthesis, properties and applications. Atlantic Publishers, New Delhi, P. 93–96 (2011).
12. W.F. Zhang, M.S. Zhang, Z.Yin, Q. Chen. Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B, 70, P. 261–265 (2000).
13. W.Li, C.Ni, et al. Size dependence of thermal stability of TiO2 nanoparticles. J. Appl. Phys., 96 (11), P. 6663 (2004).
14. J. Liqiang, S. Xiaojun, et al. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem., 177, P. 3375–3382 (2004).
15. H.K. Bo, H.K. Chang, et al. Electron beam irradiation effect on the photocatalytic activity of TiO2 on carbon nanofibers. J. Nanosci. Nanotech., 11, P. 1438–1442 (2011).
16. J. Jun, J.H. Shin, J.S. Choi, M. Dhayal. Surface Modification of TiO2 nanoparticles using electron beam radiation. J. Biom. Nano, 2 (2), P. 152–156 (2006).
17. S. K. Gupta, Rucha Desai, et al. Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. Journal of Raman Spectroscopy, 41 (3), P. 350–355 (2010)
Review
For citations:
Priyanka K.P., Joseph S., Sunny A., Varghese T. Effect of high energy electron beam irradiation on the optical properties of nanocrystalline TiO2. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(2):218-224.