Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Inhibition of corrosion of mild steel in well water by TiO2 nanoparticles and an aqueous extract of May flower

https://doi.org/10.17586/2220-8054-2016-7-4-711-723

Аннотация

Titanium dioxide nanoparticles have been used to control corrosion of mild steel in well water in the absence and presence of an aqueous May flower extract. As the concentration of TiO2 increases, the inhibition efficiency also increases. 100 ppm of TiO2 offers 84 % inhibition efficiency. The addition of 10mlof May flower extract enhances the inhibition efficiency to 95 %. Adsorption of TiO2 on the metal surface follows Langmuir adsorption isotherm. Polarization study reveals that the flower extract-TiO2 system functions as mixed type of inhibitor, controlling both anodic and cathodic reactions. AC impedance spectra reveal the formation of a protective film on the metal surface. This technology may find application in cooling water systems and concrete technology.

Об авторах

P. Nithyadevi
GTN arts College
Индия

PG and Research Department of Chemistry

Dindigul–624005



R. Joseph Rathish
PSNA College of Engineering and Technology
Индия

Dinidgul,



J. Sathiya Bama
GTN arts College
Индия

PG and Research Department of Chemistry

Dindigul–624005



S. Rajendran
RVS Educational Trust’s Group of Institutions
Индия

Corrosion Research Centre, Department of Chemistry

Dindigul–624005



R. Maria Joany
Sathyabama University
Индия

Chennai



M. Pandiarajan
GTN arts College
Индия

PG and Research Department of Chemistry

Dindigul–624005



A. Anandan
SKV Higher Sec School
Индия

Kandampalayam–637201



Список литературы

1. Lee H.J., Yeo S.Y., Jeong S.H. Antribacterial effect of nanosized silver colloidal solution on textile fabrics. J. Master. Sci, 2003, 38, P. 219–2204.

2. Alimohammadi F. Stabilization of silver nanoparticles and antibacterial characterization on the cotton surface against washing. M.Sc Thesis, Islamic Azad University Tehran South Brach, 2009.

3. Aiken J.D., Finke R.G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal, A:Chem, 1999, 145, P. 1–44.

4. Liu R., Chen H., Hu S. Synthesis and characterization of nanometals with coreshell structure. China Particuol, 2004, 2(4), P. 160–163.

5. Sung-Suh H.M., Choi J.R., Hah H.J., Koo S.M., Bae Y.C. Comparison of Ag deposition effects on the photo catalytic activity of nanoparticle TiO2, under visible and UV light irradiation. J. Photochem. Photobiol. A., 2004, 163, P. 37–44.

6. Valentine Rupa A., Manikandan D., Divaker D., Sivakumar T. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17. J. Hazard, Mater., 2007, 147, P. 906–913.

7. Uddin M.J., Cesano F., Scarano D., Bonino F., Agostini G., Spoto G., Bordiga S., Zecchina A. Cotton textile fibers coated by Au/TiO2 films: Synthesis characterization and self-cleaning properties. J. Photochem. Photobiol. A., 2008, 199, P. 64–72.

8. Sclafant A., Herrmann J.M. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) inorganic and aqueous media. J. Photochem. Photobiol. A., 1998, 113, P. 181–188.

9. Deyab M.A., Keera S.T. Effect of nano-TiO2 particles size on the corrosion resistance of alkyl coating. Chemistry and Physics, 2014, 146(3), P. 406–411.

10. Kim K.M., Lee E.H., Hur D.H. Corrosion behavior on Ni-base alloys applied with Nano-TiO2 in high temperature caustic water. Current Nanoscience, 2014, 10(1), P. 89–93.

11. Liu T., Qiang L. Research on inhibition marine microbial adherence of a novel nano-TiO2 coating on aluminium. Advanced Materials Research, 2012, 557-559, P. 1687–1690.

12. Sakata T., Kawai T., Hashimoto K. Catalytic Properties of Ruthenium Oxide on n-Type Semi-conductors under Illumination. J. Phys. Chem., 1984, 88, P. 2344–2350.

13. Fu X.Z., Zeltner W.A., Anderson M.A. Photocatalytic Generation of H2 from Seawater. Appl. Catal., 1995, B6, P. 209–220.

14. Sopyan I., Watanabe M., Murasawa S., Hashimoto K., Fujishima A. A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder: photocatalytic activity and long-term stability. J. Electroanal. Chem., 1996, 415, P. 183–186.

15. Zhang X., Fujishima A., Alexei M.J., Emeline V. Murakami T. Double-Layered TiO2−SiO2. Nanostructured Films with Self-Cleaning and Antireflective Properties. J.Phys Chem, 2006, B110, P. 25142–25148.

16. Zhou et al. Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same. US Patent 7326399 B2, 2008.

17. Hansoon C.M. Volume Relationship for C-S-H Formation Based on General Concepts. Cem. Concr. Res, 1984, 14, P. 574.

18. Nakayama N., Obuchi A. Inhibitory effects of 5-aminouracil on cathodic reactions of steels in saturated Ca(OH)2 solution. Corros. Sci., 2003, 45, P. 2075–2092.

19. Manivannan M., Rajendran S. Investcation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. International of Engineering science and Technology, 2011, 3, P. 19–23.

20. Johnsirani V., Sathiyabama J., Rajendran S, Shanthi T., Muthumegala T.S., Krishnaveni A. Inhibitive action of malachite green-Zn2+ system. Bulgarian Chemical Communication, 2012, 44, P. 41–51.

21. Epshiba R., Peter Pascal Regis A., Rajendran S. Inhibition Of Corrosion Of Carbon Steel In A Well Water By Sodium Molybdate – Zn2+ System. Int. J. Nano. Corr. Sci. Engg., 2014, 1(1), P. 1–11.

22. Kavitha N., Manjula P. Corrosion Inhibition of Water Hyacinth Leaves, Zn2+ and TSC on Mild Steel in neutral aqueous medium. Int. J. Nano. Corr. Sci. Engg., 2014, 1(1), P. 31–38.

23. Nagalakshmi R., Nagarajan L., Joseph Rathish R., Santhana Prabha S., Vijaya N., Jeyasundari J., Rajendran S. Corrosion Resistance of SS316l In Artificial Urine In Presence Of D-Glucose. Int. J. Nano. Corr. Sci. Engg., 2014, 1(1), P. 39–49.

24. Angelin Thangakani J., Rajendran S., Sathiabama J., M.Joany R. Joseph Rathis R., Santhana Prabha S. Inhibition of Corrosion of Carbon Steel In Aqueous Solution Containing Low Chloride Ion By Glycine – Zn2+ System. Int. J. Nano. Corr. Sci. Engg., 2014, 1(1), P. 50-62.

25. Nithya A., Shanthy P., Vijaya NJoseph Rathish. R., Santhana Prabha S., Joany R.M., Rajendran S. Inhibition of Corrosion of Aluminium By An Aqueous Extract of Beetroot (Betanin), Int. J. Nano Corr. Sci. Engg., 2015, 2(1), P. 1–11.

26. Gowrani T., Manjula P., Nirmala Baby C. Manonmani, Sudha K.N., Vennila R. Thermodynamical Analysis of MBTA on The Corrosion Inhibition of Brass In 3 % NaCl Medium. Int. J. Nano. Corr. Sci. Engg., 2015, 2(1), P. 12–21.

27. Namita K., Johar K., Bhrara R., Epshiba R., Singh G. Effect Of Polyethoxyethylene N, N, N‘ 1, 3 Diamino Propane on The Corrosion of Mild Steel In Acidic Solutions. Int. J. Nano Corr. Sci. Engg., 2015, 2(1), P. 22–31.

28. Christy Catherine Mary A., Rajendran S., Hameed Al-Hashem, Joseph Rathish R., Umasankareswari T., Jeyasundari J. Corrosion Resistance Of Mild Steel In Simulated Produced Water In Presence Of Sodium Potassium Tartrate. Int. J. Nano Corr. Sci. Engg., 2015, 2(1), P. 42–50.

29. Sangeetha M.,Rajendran S., Sathiyabama J., Umasankareswari T., Krishnaveni A., Joany R.M., Int. J. Nano. Corr. Sci. Engg, 2015, 2(3), P. 14–21.

30. Nithya Devi P., Sathiyabama J., Rajendran S. Joseph Rathish R., Santhana Prabha S. Influence of citric acid-Zn2+ System on Inhibition of Corrosion of Mild Steel in Simulated Concrete Pore Solution. Int. J. Nano Corr. Sci. Engg., 2015, 2(3), P. 1–13.


Рецензия

Для цитирования:


Nithyadevi P., Joseph Rathish R., Sathiya Bama J., Rajendran S., Maria Joany R., Pandiarajan M., Anandan A. Inhibition of corrosion of mild steel in well water by TiO2 nanoparticles and an aqueous extract of May flower. Наносистемы: физика, химия, математика. 2016;7(4):711-723. https://doi.org/10.17586/2220-8054-2016-7-4-711-723

For citation:


Nithyadevi P., Joseph Rathish R., Sathiya Bama J., Rajendran S., Maria Joany R., Pandiarajan M., Anandan A. Inhibition of corrosion of mild steel in well water by TiO2 nanoparticles and an aqueous extract of May flower. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(4):711-723. https://doi.org/10.17586/2220-8054-2016-7-4-711-723

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)