Cashew nut shells as source of chemicals for preparation of chalcogenide nanoparticles
https://doi.org/10.17586/2220-8054-2016-7-4-724-727
Abstract
Cashew nut shell wastes produced in cashew nut processing factories cause environmental problems. Currently, these wastes are being converted to a variety of bio-based chemicals and functional materials. Cashew nut shells (CNS) produce cashew nut shell liquid (CNSL), a dark reddish brown viscous liquid (ca. 30 – 35 wt. %) which is extracted from the soft honeycomb of the CNS. CNSL offers multitude interesting possibilities for the synthesis of speciality chemicals, high value products and polymers due to their functionalities. Our recent research have demonstrated that CNSL constituents can be transformed into diverse functional chemicals. This contribution will report on how cashew nut shells (an agro waste from cashew nut processing factories) have been employed to produce anacardic acid capped chalcogenide nanoparticles.
About the Authors
E. B. MubofuUnited Republic of Tanzania
P.O. Box 35061, Dar es Salaam, Tanzania
S. Mlowe
United Republic of Tanzania
Chemistry Department, University of Dar es Salaam; Chemistry Department, University of Zululand,
P.O. Box 35061, Dar es Salaam, Tanzania;
Private Bag X1001, KwaDlangezwa, 3886, South Africa
N. Revaprasadu
South Africa
Chemistry Department
Private Bag X1001, KwaDlangezwa, 3886
References
1. Fan F-J., Wu L., Yu S-H. Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci., 2014, 7, P. 190–208.
2. Lewis D.J., Kevin P., Bakr O., Muryn C.A., Malik M.A. and O’Brien P. Routes to tin chalcogenide materials as thin films or nanoparticles: a potentially important class of semiconductor for sustainable solar energy conversion. Inorg. Chem. Front., 2014, 1, P. 577–598.
3. Min Y., Moon G.D., Kim C-E., Lee J-H., Yang H., Soon A., Jeong U. Solution-based synthesis of anisotropic metal chalcogenide nanocrystals and their applications. J. Mater. Chem. C, 2014, 2, P. 6222–6248.
4. Santra P.K., Kamat P.V. Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides. J. Am. Chem. Soc., 2013, 135(2), P. 877–885.
5. Pan Z., Mora-Sero´ I., Shen Q., Zhang H., Li Y., Zhao K., Wang J., Zhong X., Bisquert J. High-Efficiency “Green” Quantum Dot Solar Cells. J. Am. Chem. Soc., 2014, 136(25), P. 9203–9210.
6. Kaewsaneha C., Tangboriboonrat P., Polpanich D., Eissa M., Elaissari A. Janus Colloidal Particles: Preparation, Properties, and Biomedical Applications. ACS Appl. Mater. Interfaces, 2013, 5(6), P. 1857–1869.
7. Akhtar J., Malik M.A., O’Brien P., Wijayantha K.G.U., Dharmadasa R., Hardman S.J.O., Graham D.M., Spencer B.F., Stubbs S.K., Flavell W.R., Binks D.J., Sirotti F., El Kazzi M., Silly M. A greener route to photoelectrochemically active PbS nanoparticles. J. Mater. Chem., 2010, 20, P. 2336–2344.
8. Da Silva E.C., Da Silva M.G., Meneghetti S.M., Machado G., Alencar M.A., Hickmann J.M., Meneghetti M.R. Synthesis of Colloids Based on Gold Nanoparticles Dispersed in Castor Oil. J Nanopart Res., 2008, 10, P. 201–208.
9. Devendran P., Alagesan T., Ravindran T.R., Pandian K. Synthesis of Spherical CdS Quantum Dots Using Cadmium Diethyldithiocarbamate as Single Source Precursor in Olive Oil Medium. Current Nanoscience., 2014, 10, P. 302–307.
10. Paul A., Warner T., John C. Green Chemistry: Theory and Practice. Oxford [England], New York: Oxford University Press, 1998.
11. Raveendran P., Fu J., Wallen S.L. Completely “Green” Synthesis and Stabilization of Metal Nanoparticles. J. Am. Chem. Soc., 2003, 125, P. 13940–13941.
12. Kyobe J.W., Mubofu E.B., Makame Y.M.M., Mlowe S., Revaprasadu N. CdSe quantum dots capped with naturally occurring biobased oils. New J. Chem., 2015, DOI: 10.1039/C5NJ01460C.
13. Nyamen L.D., Revaprasadu N., Ndifon P.T. Low temperature synthesis of PbS and CdS nanoparticles in olive oil. Mater. Sci. Semicond. Process., 27, P. 191–196, 2014.
14. Devendran P., Alagesan T., Ravindran T.R., Pandian K. Synthesis of spherical CdS quantum dots using cadmium diethyldithiocarbamate as single source precursor in olive oil medium. Curr. Nanosci., 2014, 10, P. 302.
15. Sapra S., Rogach A.L., Feldmann J. Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil. J. Mater. Chem., 2006, 16, P. 3391–3395.
16. Chen J., Song J.L., Sun X.W., Deng W.Q., Jiang C.Y., Lei W., Huang J.H., Liu R.S. An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl. Phys. Lett., 2009, 94, P. 153115. doi: 10.1063/1.3117221.
17. Mlowe S., Pullabhotla V.S.R., Mubofu E.B., Ngassapa F.N., Revaprasadu N. Low temperature synthesis of anacardic acid capped cadmium chalcogenide nanoparticles. Int. Nano. Lett., 2014, 4, P. 106.
18. Mlowe S., Pullabhotla V.S.R., Mubofu E.B., Ngassapa F.N., Nejo A.A., O’Brien P., Revaprasadu N. Lead chalcogenides stabilized by anacardic acid. Mater. Sci. Semicond. Process., 2013, 16, P. 263–268.
19. Tyman J.H.P. Long-chain phenols. V. Gas chromatographic analysis of cashew nut-shell liquid. (Anacardium occidentale). J. Chromatog, 1975, 111, P. 285–292.
20. Paramashivappa R., Kumar P.P., Vithayathil P.J., Rao A.S. Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L) Nut Shell Liquid. J. Agric. Food Chem., 2001, 49, P. 2548–2551.
21. Lucio P.L.L., Santos C.O., Romeiro L.A.S., Costa A.M., Ferreira J.R.O., Cavalcanti B.C., Moraes O.M., Costa-Lotufo L.V., Pessoa C., Santos M.L. Synthesis and cytotoxicity screening of substituted isobenzofuranones designed from Anacardic acids. Eur. J. Med. Chem., 2010, 45, P. 3480–3489.
22. Mokari T., Zhang M., Yang P. Shape, size, and assembly control of PbTe nanocrystals. J. Am. Chem. Soc., 2007, 129, P. 9864–9865.
Review
For citations:
Mubofu E.B., Mlowe S., Revaprasadu N. Cashew nut shells as source of chemicals for preparation of chalcogenide nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(4):724-727. https://doi.org/10.17586/2220-8054-2016-7-4-724-727