Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Some aspects of carbon nanotubes technology

Abstract

Different carbon sources (e.g. hydrocarbons, oxygen containing organic compounds) were evaluated for their use in the chemical vapor deposition (CVD) process of carbon nanotube (CNT) production with regards to their efficiency and environmental safety. The effects of both the carbon source and gas feed rates on the yield of the obtained CNT’s were determined. The data obtained indicate that intermediate species formed in gas-phase thermal transformations of carbon sources play important roles in the CVD process of CNTs growth. Particularly, it is supposed that ketene, which is an intermediate species in the thermal decomposition of acetone , is the immediate source of carbon for CNTs growth in the CVD processes utilizing acetone as a carbon source.

About the Authors

A. V. Melezhyk
Tambov State Technical University
Russian Federation

392000, Tambov, Sovetskaya str., 106



A. V. Rukhov
Tambov State Technical University
Russian Federation

392000, Tambov, Sovetskaya str., 106



E. N. Tugolukov
Tambov State Technical University
Russian Federation

392000, Tambov, Sovetskaya str., 106



A. G. Tkachev
Tambov State Technical University
Russian Federation

392000, Tambov, Sovetskaya str., 106



References

1. F. Danafar, A. Fakhru’l Razi, M.A.M. Salleh, D.R.A. Biak. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review. Chemical Engineering Journal, 155, P. 37–48 (2009).

2. Q. Li, H. Yan, J. Zhang, Z. Liu. Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition. Carbon, 42, P. 829–835 (2004).

3. S. Zhan, Y. Tian, et al. Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane. China Particuology, 5, P. 213–219 (2007).

4. Z. Niu, Y. Fang. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst. Mater. Res. Bull., 43, P. 1393–1400 (2008).

5. Z. Niu, Y. Fang. Effects of synthesis time for synthesizing single-walled carbon nanotubes over Mo-Fe-MgO catalyst and suggested growth mechanism. J. of Crystal Growth, 297, P. 228–233 (2006).

6. M. Inoue, K. Asai, et al. Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750 C. Diamond and Related Materials, 17, P. 1471–1475 (2008).

7. H. Ago, N. Uehara, et al. Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts. Carbon, 44, P. 2912–2918 (2006).

8. W. Gac, A. Denis, T. Borowiecki, L. Kepinski. Methane decomposition over Ni-MgO-Al2O3 catalysts. Appl. Catal. A: General, 357, P. 236–243 (2009).

9. V.Z. Mordkovich, E.A. Dolgova, et al. Synthesis of carbon nanotubes by catalytic conversion of methane: Competition between active components of catalyst. Carbon, 45, P. 62–69 (2007).

10. P.M. Ajayan, B. Wei. Direct synthesis of long single-walled carbon nanotube strands. United States Patent 7615204, D01F 9/12 (20060101), B82B 1/00 (20060101) (2009).

11. W. Qian, H. Yu, et al. Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur. Carbon, 40, P. 2968–2970 (2002).

12. P.M. Akbarzadeh, A. Shafiekhani, M.A. Vesaghi. Hot filament CVD of Fe-Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas. Appl. Surface Science, 256, P. 1365–1371 (2009).

13. J. Huang, Q. Zhang, et al. Liquefied petroleum gas containing sulfur as the carbon source for carbon nanotube forests. Carbon, 46, P. 291–296 (2008).

14. P. Ndungu, A. Nechaev, et al. Carbon nanomaterials synthesized using liquid petroleum gas: Analysis toward applications in hydrogen storage and production. Int. J. of Hydrogen Energy, 33, P. 3102–3106 (2008).

15. J.-M. Zhou, G.-D. Lin, H.-B. Zhang. Efficient growth of MWCNTs from decomposition of liquefied petroleum gas on a NixMg1 xO catalyst. Catal. Comm., 10, P. 1944–1947 (2009).

16. S.W. Jeong, S.Y. Son, D.H. Lee. Synthesis of multi-walled carbon nanotubes using Co-Fe-Mo/Al2O3 catalytic powders in a fluidized bed reactor. Advanced Powder Technology, 21, P. 93–99 (2010).

17. P. Ndungu, Z.G. Godongwana, et al. Synthesis of carbon nanostructured materials using LPG. Micropor. and Mesopor. Materials, 116, P. 593–600 (2008).

18. T.N. Mukhina, N.L. Barabanov, et al. Pyrolisis of hydrocarbon raw. Moscow, “Khimiya”, 240 pp. (1987).

19. Y. Hao, Z. Qunfeng, et al. Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism. Carbon, 41, P. 2855–2863 (2003).

20. G. Ortega-Cervantez, G. Rueda-Morales, J. Ortiz-Lpez. Catalytic CVD production of carbon nanotubes using ethanol. Microelectronics Journal, 36, P. 495–498 (2005).

21. Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama. Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol. Chemical Physics Letters, 374, P. 53–58 (2003).

22. A. Botello-Mendez, J. Campos-Delgado, et al. Controlling the dimensions, reactivity and crystallinity of multiwalled carbon nanotubes using low ethanol concentrations. Chemical Physics Letters, 453, P. 55–61 (2008).

23. W. Li, H. Wang, et al. Co-production of hydrogen and multi-wall carbon nanotubes from ethanol decomposi tion over Fe/Al2O3 catalysts. Appl. Catal. B: Environmental, 84, P. 433–439 (2008).

24. S. Inoue, Y. Kikuchi. Diameter control and growth mechanism of single-walled carbon nanotubes. Chemical Physics Letters, 410, P. 209–212 (2005).

25. Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama. Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chemical Physics Letters, 377, P. 49–54 (2003).

26. J. Diao, H. Wang, et al. Effect of C-supported Co catalyst on the ethanol decomposition to produce hydrogen and multi-walled carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 42, P. 2280 2284 (2010).

27. Y. Chen, B. Wang, et al. Effect of different carbon sources on the growth of single-walled carbon nanotube from MCM-41 containing nickel. Carbon, 45, P. 2217–2228 (2007).

28. Q. Liu, Y. Ouyang, et al. Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol. Physica E: Low-dimensional Systems and Nanostructures, 41, P. 1204–1209 (2009).

29. G. Wang, H. Wang, et al. Efficient production of hydrogen and multi-walled carbon nanotubes from ethanol over Fe/Al2O3 catalysts. Fuel Processing Technology, Article in Press, Corrected Proof, doi:10.1016/j.fuproc.2010.11.008.

30. E. Einarsson, Y. Murakami, M. Kadowaki, S. Maruyama. Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon, 46, P. 923–930 (2008).

31. A. Gruneis, M.H. Rummeli, et al. High quality double wall carbon nanotubes with a defined diameter distribution by chemical vapor deposition from alcohol. Carbon, 44, P. 3177–3182 (2006).

32. H. Sugime, S. Noda. Millimeter-tall single-walled carbon nanotube forests grown from ethanol. Carbon, 48, P. 2203–2211 (2010).

33. M. Wienecke, M.-C. Bunescu, et al. MWCNT coatings obtained by thermal CVD using ethanol decomposition. Carbon, 44, P. 718–723 (2006).

34. Q. Liu, Y. Fang. New technique of synthesizing single-walled carbon nanotubes from ethanol using fluidized bed over Fe-Mo/MgO catalyst. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, P. 296–300 (2006).

35. S. Chaisitsak, J. Nukeaw, A. Tuantranont. Parametric study of atmospheric-pressure single-walled carbon nanotubes growth by ferrocene–ethanol mist CVD. Diamond and Related Materials, 16, P. 1958–1966 (2007).

36. L. Zheng, X. Liao, Y.T. Zhu. Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition. Mater. Letters, 60, P. 1968–1972 (2006).

37. F. Li, X.-P. Zou, et al. Preparation of carbon nanotubes by ethanol catalytic combustion technique using nickel salt as catalyst precursor. Transactions of Nonferrous Metals Society of China, 16, P. 381–384 (2006).

38. H. Igarashi, H. Murakami, et al. Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol. Chemical Physics Letters, 392, P. 529–532 (2004).

39. F. Gao, L. Zhang, Y. Yang, S. Huang. Quality of horizontally aligned single-walled carbon nanotubes: Is methane as carbon source better than ethanol. Appl. Surface Science, 256, P. 3357–3360 (2010).

40. G. Wang, H. Wang, et al. Simultaneous production of hydrogen and multi-walled carbon nanotubes by ethanol decomposition over Ni/Al2O3 catalysts. Appl. Catal. B: Environmental, 88, P. 142–151 (2009).

41. Q. Zhao, Y. Li, et al. Synthesis of multi-wall carbon nanotubes by the pyrolysis of ethanol on Fe/MCM-41 mesoporous molecular sieves. Superlattices and Microstructures, 47, P. 432–441 (2010).

42. S. Inoue, T. Nakajima, Y. Kikuchi. Synthesis of single-wall carbon nanotubes from alcohol using Fe/Co, Mo/Co, Rh/Pd catalysts. Chemical Physics Letters, 406, P. 184–187 (2005).

43. C.T.M. Kwok, B.J. Reizman, et al. Temperature and time dependence study of single-walled carbon nanotube growth by catalytic chemical vapor deposition. Carbon, 48, P. 1279–1288 (2010).

44. A. Bachmatiuk, F. Borrnert, et al. The formation of stacked-cup carbon nanotubes using chemical vapor deposition from ethanol over silica. Carbon, 48, P. 3175–3181 (2010).

45. X. Li, A. Westwood, et al. Water assisted synthesis of clean single-walled carbon nanotubes over a Fe2O3/Al2O3 binary aerogel catalyst. New Carbon Materials, 23, P. 351–355 (2008).

46. L. Zhu, Y. Xiu, D.W. Hess, C.-P. Wong. Aligned Carbon Nanotube Stacks by Water-Assisted Selective Etching. Nano Letters, 5, P. 2641–2645 (2005).

47. K. Hata, D.N. Futaba, et al. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science, 306, P. 1362 (2004).

48. J. Huang, Q. Zhang, M. Zhao, F. Wei. Process Intensification by CO2 for High Quality Carbon Nanotube Forest Growth: Double-Walled Carbon Nanotube Convexity or Single-Walled Carbon Nanotube Bowls. Nano Res, 10, P. 872–881 (2009).

49. S.P. Somani, P.R. Somani, et al. Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission. Current Applied Physics, 9, P. 144–150 (2009).

50. L. Yu, Y. Lv, Y. Zhao, Z. Chen. Scalable preparation of carbon nanotubes by thermal decomposition of phenol with high carbon utilizing rate. Mater. Letters, 64, P. 2145–2147 (2010).

51. L.A. Montoro, P. Corio, J.M. Rosolen. A comparative study of alcohols and ketones as carbon precursor for multi-walled carbon nanotube growth. Carbon, 45, P. 1234–1241 (2007).

52. P.T.A. Reilly, W.B. Whitten. The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon, 44, P. 1653–1660 (2006)


Review

For citations:


Melezhyk A.V., Rukhov A.V., Tugolukov E.N., Tkachev A.G. Some aspects of carbon nanotubes technology. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(2):247-259.

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)