Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phase stability of fluorinated nanodiamonds under HPHT treatment

https://doi.org/10.17586/2220-8054-2018-9-1-25-28

Abstract

The aspects of phase and size stability of surface fluorinated nanoscale diamond powders during their treatment under conditions of high pressures and high temperatures (HPHT) are considered. In the studied powder, fluorine is covalently bonded to diamond particles, replacing the other functional groups on their surface. In this case, under pressure of 8.0 GPa the transition of 10-nm-size diamond nanoparticles into a graphene layered carbon forms does not occur up to temperatures of 1700 C, and their size does not change. The addition of submicro-sized aluminum powder to fluorinated nanodiamond results in the fast growth of particles to a micrometer size range. The observed unprecedented enlargement of nanodiamonds to micro-sized crystals is explained by occurrences of Wurtz-type reactions in the C–Al–F system which activate the formation of new interfacial carbon–carbon bonds between nanoparticles and their coalescence under HPHT conditions.

About the Authors

V. N. Khabashesku
Center for Technology Innovation, Baker Hughes a GE Company
United States

Houston, TX



V. P. Filonenko
Vereshchagin Institute for High Pressure Physics RAS
Russian Federation

Moscow, Troitsk



A. S. Anokhin
A. A. Baikov Institute of Metallurgy and Materials Science RAS
Russian Federation

Moscow



E. V. Kukueva
Lomonosov Moscow State University
Russian Federation

Moscow



Review

For citations:


Khabashesku V.N., Filonenko V.P., Anokhin A.S., Kukueva E.V. Phase stability of fluorinated nanodiamonds under HPHT treatment. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(1):25–28. https://doi.org/10.17586/2220-8054-2018-9-1-25-28

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)