Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Photoluminescence in Fe3+ ion doped barium titanate nanoparticles

Abstract

Fe3+ ion doped barium titanate (BT) nanopowders were synthesized by the sol gel route. The average size of tetragonal bariun titanate (t-BT) powders lies in the range 16–40 nm. The specimens show ultraviolet (UV) emission (peak at 376 nm) along with emission in violet, blue, green and yellow color. The blue band (peak at 452 nm) is seen to grow significantly with annealing temperature. This band arises due to Ti3+ defects which are stabilized by Fe3+ ions in BT specimens. The samples show two distinct Electron Paramagnetic Resonance (EPR) bands of g-value around 4.11 and 1.98, which originated from Fe3+ ions and Ti3+ defects respectively. A correlation between the photoluminescence (PL) and EPR band intensity, grown from same species, was found.

About the Authors

P. Barik
Visva-Bharati University
India

Department of Physics, Santiniketan-731235, W.B.



T. K. Kundu
Visva-Bharati University
India

Department of Physics, Santiniketan-731235, W.B.



References

1. Sahoo T., Tripathy S.K., et al. Microstructural and photo luminescence studies on hydrothermally synthesized Ce-doped barium titanate nanocrystals. Materials Science and Engineering: B., 131(1-3), P. 277–280 (2006).

2. Yu J., Sun J., et al. Light-emission properties in nanocrystalline BaTiO3. Applied Physics Letters., 77(18), P. 2807–2809 (2000).

3. Pizani P.S., Basso H.C., et al. Visible photoluminescence in amorphous ABO3 perovskites. Applied Physics Letters, 81(2), P. 253–255 (2002).

4. Pizani P.S., Leite E.R., et al. Photoluminescence of disordered ABO3 perovskites. Applied Physics Letters, 77(6), P. 824–826 (2000).

5. Gunter P., Huignard J.P., Photorefractive materials and Their Application I and II. Topic in Applied Physics, Vol. 61 and 62. Springer-Verlag, Berlin, (1988 and 1989).

6. Klein M.B., Schwartz R.N., Photorefractive effect in BaTiO3: microscopic origins. Journal of the Optical Society of America B: Optical Physics, 3(2), P. 293–305 (1986).

7. Schunemann P.G., Temple D.A., et al. Role of iron centers in the photorefractive effect in barium titanate. Journal of the Optical Society of America B: Optical Physics, 5(8), P. 1685–1696 (1988).

8. Mazur A., Schirmer O.F., et al. Optical absorption and light-induced charge transport of Fe2+ in BaTiO3. Applied Physics Letters, 70(18), P. 2395–2397 (1997).

9. Katiyar R.S., Meng J.F., et al. Effect of grain size and Pb dopant on luminescence in BaTiO3. Journal of Vacuum Science & Technology A. 15(6), P. 2945–2948 (1997).

10. Meng J., Huang Y., et al. Photoluminescence in nanocrystalline BaTiO3 and SrTiO3. Physics Letters A, 205(1), P. 72–76 (1995).

11. Dey S.K., Leeg R.Z., Processing and parameters of sol-gel PZT thin-films for GaAs memory applica tions. Ferroelectrics, 112(1), P. 309–319 (1990).

12. Leonelli R., Brebner J.L., Time-resolved spectroscopy of the visible emission band in strontium titanate. Physical Review B, 33(12), P. 8649–8656 (1986).

13. Bouma B., Blasse G., Dependence of luminescence of titanates on their crystal structure. Journal of Physics and Chemistry of Solids, 56(2), P. 261–265 (1995).

14. Zhang M.S., Yin Z., et al. Study of structural and photoluminescent properties in barium titanate nanocrystals synthesized by hydrothermal process. Solid State Communications, 119(12), P. 659–663 (2001).

15. Souza I.A., Gurgel M.F.C., et al. Theoretical and experimental study of disordered Ba0.45Sr0.55TiO3 photoluminescence at room temperature. Chemical Physics, 322(3), P. 343–348 (2006).

16. Orhan E., Varela J.A., et al. Room-temperature photoluminescence of BaTiO3: Joint experimental and theoretical study. Physical Review B, 71(8), P. 085113–085119 (2005).

17. Silva M.S., Cilense M., et al. The nature of the photoluminescence in amorphized PZT. Journal of Luminescence, 111(3), P. 205–213 (2005).

18. Beck H.P., Eiser W., et al. Pitfalls in the synthesis of nanoscaled perovskite type compounds. Part I: Influence of different so-gel preparation methods and characterization of nanoscaled BaTiO3. Journal of the European Ceramic Society, 21(6), P. 687–693 (2001).

19. Jana A., Kundu T.K., et al. Dielectric behavior of Fe-ion-doped BaTiO3 nanoparticles. Journal of Applied Physics, 97(4), P. 044311–044316 (2005).

20. Jana A., Ram S., et al. BaTiO3 nanoparticles of orthorhombic structure following a polymer precursor. Part I. X-ray diffraction and electron paramagnetic resonance. Philosophical Magazine B, 87(35), P. 5485–5495 (2007).

21. Hoffmann K., Hahn D., Electron Spin Resonance of Lattice Defects in Zinc Oxide. Physica status solidi (a), 24(2), P. 637–648 (1974).

22. Ram S., Kundu T.K., Synthesis and Unusual Electron Paramagnetic Resonance Spectrum of Metastable Nanoclusters of ZnO Semiconductor Crystallites. Journal of Nanoscience and Nanotechnology, 4(8), P. 1076–1080 (2004).

23. Kutty T.R.N., Murugaraj P., EPR study on the role of Mn in enhancing PTC of BaTiO3. Materials Letters, 3(5-6), P. 195–199 (1985).

24. Hornig A.W., Rempel R.C., et al. Interpretation of Electron Paramagnetic Resonance in BaTiO3. Physical Review Letter, 1(8), P. 284–286 (1958).

25. Kirkpatric E.S., Muller K.A., et al. Strong Axial Electron Paramagnetic Resonance Spectrum of Fe3+ in SrTiO3 Due to Nearest-Neighbor Charge Compensation. Physical Review, 135(1A), P. A86–A90 (1964).

26. Maartense I., Magnetic Properties of Fe2+-Doped MnCO3. Physical Review B, 6(11), P. 4324–4331 (1972).

27. Cordona M., Optical Properties and Band Structure of SrTiO3 and BaTiO3. Physical Review, 140(2A), P. A651–A655 (1965).

28. Kim S.W., Fujita S., et al. Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition. Applied Physics Letters, 81(26), P. 5036–5038 (2002).

29. Brus L., Electronic wave functions in semiconductor clusters: experiment and theory. The Journal of Physical Chemistry, 90(12), P. 2555–2560 (1986).

30. Cho W.S., Hamada E., Planar defects and luminescence of BaTiO3 particlessynthesizedbyapolymer ized complex method. Journal of Alloys and Compounds, 268(1-2), P. 78–82 (1998).


Review

For citations:


Barik P., Kundu T.K. Photoluminescence in Fe3+ ion doped barium titanate nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(2):269-275.

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)