Participation of nanocrystalline TiO2 surface in the electron transfer between semiconductor solid and adsorbed cobalt(III)-Rpy complex
Abstract
Cis-[CoIII(tn)2(Rpy)Br]Br2, (R =4-CN, H, 4-Bz, 4-Me, 4-Et, and 4-MeNH), in aqueous 2-propanol exhibit varying adsorption characteristics and led to surface compound formation. UV (λ = 254) excitation of the nano-TiO2//cobalt(III)-(Rpy) surface compound resulted in interfacial electron transfer (IFET) reaction. The IFET has been found to be dependent upon the coordination environment of the complex, more precisely due to the Rpy ligand. In addition, the proposed mechanism of the IFET reaction includes the formation of a CoII ion implanted in nanocrystalline TiO2. This photoreduction was found to be solvent controlled. The photoefficiency of the CoIIaq formation was spectrally analyzed simultaneously as CoII:TiO2 was isolated from the photolyte solution. The isolated solid was subjected to FTIR, DRS, PXRD, and SEM-EDX instrumental analysis. It is concluded that the removal of metal ion in the form of a complex is coordination structure dependent, hence, seems more specific in removal efficiency and in doping the anatase lattice.
About the Authors
A. S. GaneshrajaIndia
Department of Chemistry
Pondicherry 605 014
K. Anbalagan
India
Department of Chemistry
Pondicherry 605 014
References
1. Kamat P.V. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem. Rev., 93, P. 267–300 (1993).
2. Guo H., Saalfrank P., Seideman T. Theory of Photoinduced Surface Reactions of Admolecules. Prog. Surf. Sci., 62, P. 239–303 (1999).
3. Zimmermann F. M., Ho W. State Resolved Studies of Photochemical Dynamics at Surfaces. Surf. Sci. Rep., 22, P. 127–247 (1995).
4. Hagfeld A., Gratzel M. Molecular Photovoltaics. Acct. Chem. Res., 33, P. 269–277 (2000).
5. Forrest S. R. The Limits to Organic Photovoltaic Cell Efficiency. MRS Bull., 30, P. 28–32 (2005).
6. Galperin M., Nitzan A. Current-Induced Light Emission and Light-Induced Current in Molecular Tunneling Junctions. Phys. Rev. Lett., 95, P. 206802-1–4 (2005).
7. O’Regan B., Gratzel M. A Low-cost, High-efficiency Solar Cell based on Dye-sensitized Colloidal TiO2 films. Nature, 353, P. 737–740 (1991).
8. O’Regan B., Gratzel M. Photoelectrochemical Cells. Nature, 414, P. 338–344 (2001).
9. Yang L., Jiang X., Yang M. Improvement of Surface-enhanced Raman Scattering Performance for BroadBandGapSemiconductorNanomaterial (TiO2): Strategy of Metal Doping. Appl. Phys. Lett., 99, P. 111114-1–3 (2011).
10. Kalayanasundaram K., Gratzel M. Applications of Functionalized Transition Metal Complexes in Pho tonic and Optoelectronic Devices. Coord. Chem. Rev., 77, P. 347– 414 (1998).
11. Boroda Y. G., Calhoun A., Voth G. A. A Theory for Electron Transfer Across the Electrode/electrolyte Interface Involving more than one Redox Ion. J. Chem. Phys., 107, P. 8940–8954 (1997).
12. Cong Y., Tian B. Z., Zhang J. L. Improving the Thermal Stability and Photocatalytic Activity of Nanosized Titanium Dioxide via La3+ and N co-doping. Appl. Catal. B, 101, P. 376–381 (2011).
13. Rengifo-Herrera J. A., Pierzchaa K., Sienkiewicz A., Forr L., Kiwi J., Moser J. E., Pulgarin C. Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-codoped TiO2 having Different Surface-to-volume Ratios. J. Phys. Chem. C, 114, P. 2717–2723 (2010).
14. Liu S., Xie T. H., Chen Z., Wu J. T. Highly active V-TiO2 for Photocatalytic Degradation of Methyl Orange. Appl. Surf. Sci., 255, P. 8587–8592 (2009).
15. Yang Q. J., Choi H., Chen Y. J., Dionysiou D. D. Heterogeneous Activation of Peroxymonosulfate by Supported Cobalt Catalysts for the Degradation of 2,4- dichlorophenol in water: The Effect of Support, Cobalt Precursor, and UV Radiation. Appl. Catal. B, 77, P. 300–307 (2008).
16. Liu Y., Wei J. H., Xiong R., Pan C. X., Shi J. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Appl. Surf. Sci., 257, P. 8121–8126 (2011).
17. Han C., Pelaez M., Likodimos V., Kontos A.G., Falaras P., O’Shea K., Dionysiou D.D. Size-Tunable Hydrothermal Synthesis of SnS(2) Nanocrystals with High Performance in Visible Light-Driven Pho tocatalytic Reduction of Aqueous Cr(VI). Appl. Catal. B, 107, P. 77–87 (2011).
18. Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, P. 269–271 (2001).
19. Sekiya T., Kamei S., Kurita S. Luminescence of Anatase TiO2 Single Crystals Annealed in Oxygen Atmosphere. J. Luminescence, 1140, P. 87–89 (2000).
20. Rodr´ ıguez R., Jim´enez-Sandoval S., Estevez M., Vargas S. Defec-Induced Luminescence in Co(II)-doped Anatase TiO2 Prepared by the Sol-Gel Method. J. Non-Crystalline Solids, 351, P. 167–172 (2005).
21. Anbalagan K., Ganeshraja A. S., Maharaja Mahalakshmi C. Excited Nanoscale-TiO2 Induced Interfacial Electron Transfer Reaction of Redox Active Cobalt(III)-alkyl Amine Complex and the Solid Surface. Met. Chem. Phys., 134, P. 747–754 (2012).
22. Anbalagan K. UV-Sensitized Generation of Phasepure Cobalt-Doped Anatase: CoxTi1−xO2−δ Nanocrys tals with Ferromagnetic Behavior Using Nano-TiO2/cis- [CoIII(en)2(MeNH2)Cl]2+. J. Phys. Chem. C, 115, P. 3821–3832 (2011).
23. Kelly C. A., Meyer G. J. Excited State Processes at Sensitized Semiconductor- Interfaces Characterized by Nanosecond Absorption Spectroscopy. Coord. Chem. Rev., 211, P. 295–315 (2001).
24. Anbalagan K., Maharaja Mahalakshmi C., Ganeshraja A. S. Synthesis and Spectroscopic Characteriza tion of Cobalt(III)-Alkyl Amine Complexes Showing Surface Affinity: Single Crystal X-ray Structure Determinations. J. Mol. Struct., 1005, P. 45–52 (2011).
25. Kitson R. E. Simultaneous Spectrophotometric Determination of Cobalt, Copper and Iron. Anal. Chem., 22, P. 664–667 (1950).
26. Suryanarayana C. Nanocrystalline Materials. Inter. Mater. Rev., 40, P. 41-64 (1995).
27. Moazzami K., Murphy T. E., Phillips J. D., Cheung M. C-K., Cartwright A. N. Sub- Bandgap Pho toconductivity in ZnO Epilayers and Extraction of Trap Density Spectra. Semicond. Sci. Technol., 21, P. 717–723 (2006).
28. Comedi D., Heluani S. P., Villafuerte M., Arce R. D., Koropecki R. R. Power-law Photoconductivity Time Decay in Nanocrystalline TiO2 Thin Films. J. Phys.: Condens. Matter, 19, P. 486205 (10pp) (2007).
29. Shimakawa K., Murata K., Matsunomo S., Naito H. Photo-Carrier Transport in Disordered Organic TPD Films. J. Non-Cryst. Solids, 352, P. 1671–1674 (2006).
30. Anbalagana K., Lydia I. S. Solvent Control on the Electron Transfer Reaction between CoIII(en)2Br(L)2+–Fe(CN)−4 6 (L = aryl amines) by Regression Relationships: the PXRD and Elec trochemical Investigations. J. Phys. Org. Chem., 24, P. 45–53 (2011).
31. Xie Z., Burkalov V.M., Henry B.M., Kirov K.R., Smith H.E., Grovenor C.R.M., Assender H.E., Briggs G.A.D., Kano M., Tsukahara Y. Intensity-Dependent Relaxation of Photoconductivity in Nanocrystalline Titania Thin Films. Phys. Rev. B, 73, P. 113317 (2006).
32. Mele G., Ciccarella G., Vasapollo G., Garcia-Lopez E., Palmisano L., Schiavello M. Photocatalytic Degradation of 4-nitrophenol in Aqueous Suspension by using Polycrystalline TiO2 Samples Impreg nated with Cu(II)-phthalocyanine. Appl. Catal. B, 38, P. 309–311 (2002).
33. Anbalagana K., Lydia I. S. Homogeneous Solvation Controlled Photoreduction of Cobalt(III) Complexes in Aqueous 2-methyl-2-propanol Solutions Linear Solvation Energy Relationship and Cyclic Voltammet ric Analyses. Spectrochim. Acta A, 69, P. 964–970 (2008).
34. Matsuo S., Sakaguchi N., Yamada K., Matsuo T., Wakita H. Role in Photocatalysis and Coordination Structure of Metal Ions Adsorbed on Titanium Dioxide Particles: A Comparison between Lanthanide and Iron Ions. Appl. Surf. Sci., 228, P. 233–244 (2004).
35. Ardo S., Meyer G. J. Direct observation of Photodriven Intermolecular Hole Transfer Across TiO2 Nanocrystallites: Lateral Self-exchange Reactions and Catalyst Oxidation. J. Am. Chem. Soc. 132, P. 9283–9285 (2010).
36. Creutz C., Brunschwig B. S., Sutin N. Interfacial Charge Transfer Absorption: 3. Application to Semiconductor-Molecule Assemblies. J. Phys. Chem. B, 110, P. 25181–25190 (2006).
37. Ardo S., Sun Y., Staniszewski A., Castellano F. N., Meyer G. J. Stark-like Effects after Excited State Interfacial Electron Transfer at Sensitized TiO2 Nanocrystallites. J. Am. Chem. Soc., 132, P. 6696–6709 (2010).
38. Minero C., Mariella G., Maurino V., Pellizzetti E. Photocatalytic Transformation of Organic Com pounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reac tions of Phenol on a Titanium Dioxide Fluoride System. Langmuir, 16, P. 2632–2641 (2000).
39. Ohko Y., Hashimoto K., Fujishima A. Kinetics of Photocatalytic Reactions under Extremely Low Intensity UV Illumination on Titanium Dioxide Thin Films. J. Phys. Chem. A, 101, P. 8057–8062 (1997).
40. Wu J. C. S., Chen C. H. A Visible-Light Response Vanadium-Doped Titania Nanocatalyst by Sol–Gel Method. J. Photochem. Photobiol. A, 163, P. 509–515 (2004).
41. Hamadanian M., Reisi-Vanani A., Majedi A. Sol–Gel Preparation and Characterization of Co/TiO2 Nanoparticles: Application to the Degradation of Methyl Orange. J. Iran. Chem. Soc., 7, P. S52–S58 (2010).
42. Anbalagan K., Stephen L. D. UV-Sensitized Nanomaterial Semiconductor Catalytic Reduction of CoIII(N–N)3+ 3 /nm-TiO2 and Co:TiO2 Formation: SEM-EDX and HRTEM Analyses. Transition Met. Chem., 34, P. 915–923 (2009).
43. Baiju K.V., Shajesh P., Wunderlich W., Mukundan P., Kumar S. R., Warrier K. G. K., Effect of Tan talum Addition on Anatase Phase Stability and Photoactivity of Aqueous Sol–Gel Derived Mesoporous Titania. J. Mol. Catal. A, 276, P. 41–46 (2007).
44. Srivatsa K. M. K., Chhikara D., Senthil Kumar M. Synthesis of Anatase Titania Nanostructures at Room Temperature by PECVD Technique. J. Mater. Sci. Technol., 27, P. 696–700 (2011).
45. Santhosh, S. M., Swetha S., Geetha, S., Balakrishna R. Erratum to “Structure and Photocatalytic Activity of Ti1−XMxO2(M = Zr, Co and Mo) Synthesized by Pulverized Solid State Technique”. Cent. Eur. J. Chem., 8, P. 453–460 (2010).
Review
For citations:
Ganeshraja A.S., Anbalagan K. Participation of nanocrystalline TiO2 surface in the electron transfer between semiconductor solid and adsorbed cobalt(III)-Rpy complex. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(2):276-287.