Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Interatomic interaction in bbc metals

Abstract

Parameters of interatomic potential for 10 bcc metals are presented in this paper. The potential is based on the embedded atom method (V.E. Zalizniak, O.A. Zolotov. Universal interatomic potential for pure metals. Nanosystems: Physics, Chemistry, Mathematics 2012, v. 3(1), p.76). Parameters are determined empirically by fitting to the equilibrium lattice constant, sublimation energy, vacancy formation energy and elastic constants.

About the Author

V. Zalizniak
Siberian Federal University
Russian Federation

Zalizniak Victor, Associate Professor, PhD
Personal address – 660077, Krasnoyarsk, Molokova St. 1/4, flat 39
Mobile phone number - +79135617586



References

1. Daw M.S. and Baskes M.I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Letters, 1983, 50(17), 1285.

2. Daw M.S. and Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 1983, 29, 6443.

3. Dai X.D., Kong Y., Li L.H. and Lin B.X. Extended Finnis-Sinclair potential for bсс and fсс metals and alloys. J. Phys.: Condensed Metter, 2006, 18, 4527.

4. Wilson R.B. and Riffe D.M. An embedded-atom-method model for alkali-metal vibrations. J. Phys.: Condens. Matter, 2012, 24, 335401.

5. Fellinger M.R., Park H. and Wilkins J.W. Force-matched embedded-atom method potential for niobium. Phys. Rev. B, 2010, 81, 144119.

6. Lin Z., Johnson R.A. and Zhigilei L.V. Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys. Rev. B, 2008, 77, 214108.

7. Chamati H., Papanicolaou N.I., Mishin Y., D.A. Papaconstantopoulos. Embedded-atom potential for Fe and its application to self-diffusion on Fe(1 0 0). Surface Science, 2006, 600(9), 1793.

8. Зализняк В.Е., Золотов О.А., Универсальный потенциал взаимодействия для чистых металлов, Наносистемы: физика, химия, математика, 2012, 3(1), с. 76-86.

9. Kittel C. Introduction to solid state physics. New York, Wiley, 1996.

10. Feder R. Equilibrium defect concentration in crystalline lithium. Phys. Rev. B, 1970, 2(4), 828.

11. Feder R. and Charbnau H. P. Equilibrium defect concentration in crystalline sodium. Phys. Rev., 1966, 149(2), 464.

12. MacDonald D. K. C. Self‐diffusion in the alkali metals. J. Chem. Phys., 1953, 21(1), 177.

13. Janot C., George B. and Delcroix P. Point defects in vanadium investigated by Mossbauer spectroscopy and positron annihilation. J. Phys. F: Met. Phys., 1982, 12(1), 47.

14. Schultz H. and Ehrhart P., in Atomic defects in metals, Landolt-Bornstein, New series, Group III Springer, Berlin, 1991.

15. Puska M. and Nieminen R.M. In: Density functional methods in chemistry and materials science. New York, Wiley, 1997.

16. Maier K., Peo M., Saile B., Shaefer H. E. and Seeger A. High–temperature positron annihilation and vacancy formation in refractory metals. Phil. Mag. A, 1979, 40(5), 701.

17. Lee B. J., Baskes M. I., Kim H. and Cho Y. K. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B, 2001, 64(18), 184102.

18. Felice R. A., Trivisonno J. and Shuele D. E. Temperature and pressure dependence of the single-crystal elastic constants of 6Li and natural lithium. Phys. Rev. B, 1977, 16(12), 5173.

19. Martinson R. H. Variation of the elastic constants of sodium with temperature and pressure. Phys. Rev., 1969, 178(3), 902.

20. Marquardt W. R., Trivisonno J. Low temperature elastic constants of potassium. J. Phys. and Chem. Solids, 1965, 26(2), 273.

21. Ledbetter H. and Kim S. Monocrystal elastic constants and derived properties of the cubic and the hexagonal elements: in Handbook of elastic properties of solids, liquids, and gases, Vol. 2, Academic Press, 2001.

22. Bolef D. I. and de Klark J., Anomalies in the elastic constants and thermal expansion of chromium single crystals. Phys.Rev., 1963, 129(3), 1063.

23. Lide D. R. Handbook of chemistry and physics, Boca Raton Fl, CRC Press, 2000.


Review

For citations:


Zalizniak V. Interatomic interaction in bbc metals. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(6):64-69. (In Russ.)

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)