Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin

https://doi.org/10.17586/2220-8054-2019-10-5-585-598

Abstract

Luminescent hydrophobic composite films based on nanocrystalline (CNC) and nanofibrillated (CNF) cellulose matrix with up-conversion MF2:Ho (M = Ca, Sr) particles and acrylic resin (ACR) as a coating have been synthesized. Flexible, translucent composite films were obtained by molding from the CNC/CNF suspensions with up-conversion particles. ACR coating was applied to the composite film by spraying. Studies have shown that ACR coating with a layer thickness of 7 – 10 γm provides hydrophobic properties for the films, increasing the water contact angle up to 100 ± 2° with a simultaneous improvement in the luminescent properties. Transparency of CNC/CNF/MF2:Ho-ACR films in the visible and near IR region improves by 20 – 25 % without compromising the flexibility and thermal stability. The manufactured water-resistant composite films can be utilized as potential photonics materials, in particular for visualization of near-IR laser radiation and luminescent labels.

About the Authors

A. A. Luginina
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

A.A. Luginina

Vavilov str. 38, Moscow, 119991



S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

S.V. Kuznetsov

Vavilov str. 38, Moscow, 119991



V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

V.V. Voronov

Vavilov str. 38, Moscow, 119991



A. D. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

A. D. Yapryntsev

Leninskii prosp. 31, Moscow, 119991



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

V. K. Ivanov

Leninskii prosp. 31, Moscow, 119991



D. I. Petukhov
Lomonosov Moscow State University, Chemical department
Russian Federation

D. I. Petukhov

Leninskie Gory str. 1, Moscow, 119991



A. A. Lyapin
Ogarev Mordovia State University
Russian Federation

A. A. Lyapin

Bolshevistskaya str. 68, Saransk, 430005



A. S. Ermakov
Ogarev Mordovia State University
Russian Federation

A. S. Ermakov

Bolshevistskaya str. 68, Saransk, 430005



D. V. Pominova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

D.V. Pominova

Vavilov str. 38, Moscow, 119991



E. V. Chernova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

E.V. Chernova

Vavilov str. 38, Moscow, 119991



A. A. Pynenkov
Ogarev Mordovia State University
Russian Federation

A. A. Pynenkov

Bolshevistskaya str. 68, Saransk, 430005



K. N. Nishchev
Ogarev Mordovia State University
Russian Federation

K. N. Nishchev

Bolshevistskaya str. 68, Saransk, 430005



P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

P. P. Fedorov

Vavilov str. 38, Moscow, 119991



References

1. Thomas B., Raj M.C., et al. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev., 2018, 118 (24), P. 11575–11625.

2. Eichhorn S.J., Rahatekar S.S., Vignolini S., Windle A.H. New horizons for cellulose nanotechnology. Phil.Trans. R. Soc. A, 2018, 376, 20170200.

3. Kontturi E., Laaksonen P., et al. Advanced Materials through Assembly of Nanocelluloses, Adv. Mater., 2018, 30, 1703779.

4. Abitbol T., Rivkin A., et al. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol., 2016, 39, P. 76–88.

5. Jiang H., Zhou D., et al. Self-organized helical superstructure of photonic cellulose loaded with upconversion nanoparticles showing modulated luminescence. RSC Advances, 2016, 6, P. 76231–76236.

6. Xue B., Zhang Z., et al. Near-infrared emissive lanthanide hybridized nanobrillated cellulose nanopaper as ultraviolet lter. Carbohydr. Polym., 2018, 186, P. 176–183.

7. Eichhorn S.J. Cellulose Nanofibres for Photonics. Curr. Opin. Green and Sustainable Chemistry, 2018, 12, P. 1–7.

8. Yu Z., Xu Z.,et al.Water-Resistant and Haze-Tunable Transparent Cellulose Nanopaper for Patterned Electroluminescence Devices. Macromol. Mater. Eng., 2018, 306 (6) 1800142.

9. Du X., Zhang Z., Liu W., Deng Y. Nanocellulose-based conductive materials and their emerging applications in energy devices – A review. Nano Energy, 2017, 35, P. 299–320.

10. Vicente A.T., Araujo A., et al. Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C, 2018, 6, P. 3143–3181.

11. Ha D., Fang Z., Zhitenev N.B. Paper in Electronic and Optoelectronic Devices. Adv. Electron. Mater., 2018, 4 (5), 1700593.

12. Seabra A.B., Bernardes J.S., et al. Cellulose nanocrystals as carriers in medicine and their toxicities: A review. Carbohydr. Polym., 2018, 181, P. 514–527.

13. Yang J., Li J. Self-assembled cellulose materials for biomedicine: A review. Carbohydr. Polym., 2018, 181, P. 264–274.

14. Morales-Narv´aez E., Golmohammadi H., et al. Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9, P. 7296–7305.

15. Li M., Li X., Xiao H.N., James T.D. Fluorescence sensing with cellulose-based materials. Chemistry Open, 2017, 6, P. 685–696.

16. Golmohammadi H., Morales-Narváez E., Naghdi T., Merkoi A. Nanocellulose in Sensing and Biosensing. Chem. Mater., 2017, 29, P. 5426–5446.

17. Zor E., Alpaydin S., et al. Photoluminescent nanopaper-based microcuvette for iodide detection in seawater. Sens Actuators B Chem. 2018, 254, P. 1216–1224.

18. Dong S., Roman M. Fluorescently Labeled Cellulose Nanocrystals for Bioimaging Applications. J. Am. Chem. Soc., 2007, 129, P. 13810–13811.

19. Pouzesh M., Nekouei S., et al. Fabrication of stable copper nanoparticles embedded in nanocellulose film as a bionanocomposite plasmonic sensor and thereof for optical sensing of cyanide ion in water samples. Cellulose, 2019, 26 (8), P. 4945–4956.

20. Guan Q., Song R., et al. Fluorescent CdTe-QD-encoded nanocellulose microspheres by green spraying method. Cellulose, 2018, 25 (12), P. 7017–7029.

21. Yan C-Y., Fang Z-Q., et al. A tunable optoelectronic nanobrillated cellulose/CdS quantum dot film with improved transmittance and strength. Cellulose, 2018, 25, P. 2405–2417.

22. Park J., Seo J-H., et al. Flexible and Transparent Organic Phototransistors on Biodegradable Cellulose Nanofibrillated Fiber Substrates. Adv. Optical Mater., 2018, 6 (9), 1701140.

23. Zhang Z., Zhang M., et al. Irreversible Solvatochromic Zn-Nanopaper Based on Zn(II) Terpyridine Assembly and Oxidized Nanofibrillated Cellulose. ACS Sustainable Chem. Eng., 2018, 6, 11614.

24. Yang S., Xie Q., et al. Acetylation improves thermal stability and transmittance in FOLED substrates based on nanocellulose films. RSC Adv., 2018, 8, P. 3619–3625.

25. You Y., Zhang H., et al. Preparation and properties of Sr2Si5N8:Eu2+-cellulose hybrid films for sunlight conversion. Cellulose, 2015, 22, P. 3337–3345.

26. Zhang L., Lyu S., Chen Z., Wang S. Fabrication Flexible and Luminescent Nanofibrillated Cellulose Films with Modified SrAl2O4: Eu, Dy Phosphors via Nanoscale Silica and Aminosilane. Nanomaterials, 2018, 8, 352.

27. Zhang L., Lyu S., et al. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing. Carbohydr. Polym., 2019, 206, P. 767–777.

28. Zor E. Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform. Talanta, 2018, 184, P. 149–155.

29. Querejeta-Fernández A., Chauve G., et al. Chiral Plasmonic Films Formed by Gold Nanorods and Cellulose Nanocrystals. J. Am. Chem. Soc., 2014, 136, P. 4788–4793.

30. Klemm D., Heublein B., Fink H-P., Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem. Int. Edit., 2005, 44, P. 3358–3393.

31. Habibi Y., Lucia L.A., Rojas O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110, P. 3479–3500.

32. Klemm D., Kramer F., et al. Nanocelluloses: a new family of nature-based materials: a review. Angew Chem. Int. Edit., 2011, 50, P. 5438–5466.

33. Foster E.J., Moon R.J., et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev., 2018, 47, P. 2609–2679.

34. Jonoobil M., Oladi R., et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 2015, 22, P. 935–969.

35. Mondal S. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym., 2017, 163, P. 301–316.

36. Kargarzadeh H., Mariano M., et al. Advances in cellulose nanomaterials. Cellulose, 2018, 25, P. 2151–2189.

37. HamadW.Y. Cellulose Nanocrystals and Nanofibrils in Advanced Applications, in Handbook of Nanocellulose and Cellulose Nanocomposites (eds H. Kargarzadeh, I. Ahmad, S. Thomas and A. Dufresne), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017, P. 799–829.

38. Wilts B.D., Dumanli A.G., et al. Chiral optics of helicoidal cellulose nanocrystal lms. APL Photonics, 2017, 2, 040801.

39. Gray D.G. Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal lms. Nanomaterials, 2016, 6, 213.

40. Surov O.V., Voronova M.I., Zakharov A.G. Functional materials based on nanocrystalline cellulose. Russ. Chem. Rev., 2017, 86, P. 907–933.

41. Qing Y., Sabo R., et al. Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose, 2015, 22, P. 1091–1102.

42. Sun X. Wu Q., et al. Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose, 2018, 25, P. 1103–1115.

43. Miao M., Zhao J., et al. Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes. J. Mater. Chem. C, 2015, 3, P. 2511–2517.

44. Chu G., Wang X., et al. Chiral electronic transitions of YVO4:Eu3+ nanoparticles in cellulose based photonic materials with circularly polarized excitation. J. Mater. Chem. C, 2015, 3, P. 3384–3390.

45. Nguyen T.D., HamadW.Y., MacLachlan M.J. Near-IR sensitive up-converting nanostructured photonic cellulose films. Adv. Opt. Mater., 2017, 5, 1600514.

46. Zhang Z., Chang H., et al. Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)-carbon quantum dots grafted oxidized nanobrillated cellulose for anti-counterfeiting applications. Cellulose, 2018, 25 (1), P. 377–389.

47. Fedorov P.P., Luginina A.A., et al. Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions. J. Fluorine Chem., 2017, 194, P. 8–15.

48. Kuznetsov S.V., Proydakova V.Yu., et al. Synthesis and quantum yield investigations of the Sr1-x-yPrxYbyF2+x+y luminophores for photonics. Nanosystems: Phys., Chem., Math., 2018, 9 (5), P. 663–668.

49. Ioelovich M.Y. Study of cellulose interaction with concentrated solutions of sulfuric acid. ISRN Chem. Eng., 2012, 4289741.

50. Acrylic universal gloss varnish KU-9002. Technical Information Sheet. URL: https://kudo-paint.ru/products/dekorativnaya-seriya/laki/lak-akrilovyj-universalnyj-glyantsevyj/

51. Song X., Yang S., et al. Transparent and Water-Resistant Composites Prepared from Acrylic Resins ABPE-10 and Acetylated Nanofibrillated Cellulose as Flexible Organic Light-Emitting Device Substrate. Nanomaterials, 2018, 8 (9), 648.

52. Ternay A.L. Contemporary Organic Chemistry. W. B. Saunders Co, Philadelphia, 1976, 993.

53. Fedorov P.P., Luginina A.A., et al. Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particle. Cellulose, 2019, 26 (4), P. 2403–2423.

54. Feng X., Meng X., et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose, 2015, 22, P. 1763–1772.

55. Al-Dulaimi A.A., Wanrosli W. Isolation and Characterization of Nanocrystalline Cellulose from Totally Chlorine Free Oil Palm Empty Fruit Bunch Pulp. J. Polym. Environ., 2017, 25, P. 192–202.

56. Slepchuk I., Semeshko O.Ya., Asaulyuk T.S., Saribekova Yu.G. Investigation of impact of rosslinking agents on characteristics of spatial net and properties of styrene-acrylic polymer films. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2018, 61(7), P. 68–76 (in Russian).


Review

For citations:


Luginina A.A., Kuznetsov S.V., Voronov V.V., Yapryntsev A.D., Ivanov V.K., Petukhov D.I., Lyapin A.A., Ermakov A.S., Pominova D.V., Chernova E.V., Pynenkov A.A., Nishchev K.N., Fedorov P.P. Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(5):585-599. https://doi.org/10.17586/2220-8054-2019-10-5-585-598

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)