Adiabatic and vertical ionization potentials of single-walled carbon nanotubes
Abstract
In this work, vertical and adiabatic ionization potentials of model single-walled carbon nanotubes (SWNT) were calculated by the DFT method. The changes of ionization potentials of structures with various lengths and diameters were analyzed. Geometry changes of SWNTs with various lengths upon ionization were revealed.
About the Authors
I. K. PetrushenkoRussian Federation
Petrushenko Igor, engineer, PhD in chemistry
Personal address 664046, Pogranichniy lane 6-4, Irkutsk, Russia
Home phone number +7 (3952) 700-623
Work phone number +7 (3952) 405-903
Mobile phone number +79021718345
N. A. Ivanov
Russian Federation
Ivanov Nikolay, Director, PhD in physics, associate professor
Work phone number +7 (3952) 405-903
Mobile phone number +7 (3952) 60-77-31
References
1. Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. 354, p. 568.
2. Wong E. W., Sheehan P. E. and Lieber С. М. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes // Science. 1997. 277, p.1971.
3. O'Connell M. J. et. al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes // Science. 2002. 297, p. 593.
4. Петрушенко И.К., Иванов Н.А. Оптические свойства коротких углеродных нанотрубок с концевыми пиррольными заместителями. квантовохимическое исследование // Вестник Иркутского государственного технического университета. 2011. Т. 50, № 3. С. 110-116.
5. Guangyu Chai, Lee Chow. Electron emission from the side wall of an individual
6. multiwall carbon nanotube // Carbon. 2007. 45, pp. 281–284.
7. Heer W.A.D., Chatelain A., Ugarte D. A carbon nanotube field-emission electron source // Science. 1995. 270, pp. 1179–1180.
8. Shiraishi M., Ata M., Work function of carbon nanotubes // Carbon. 2007. 45, pp. 281–284
9. Cheng Y., Zhou O., Electron field emission from carbon nanotubes // C. R. Physique. 2003. 4, pp.1021–1033
10. Buonocore F. et. al. Ab initio calculations of electron affinity and ionization potential of carbon nanotubes // Nanotechnology. 2008. 19, p. 025711
11. Buzatu D.A. et. al. Electronic Properties of Single-Wall Carbon Nanotubes and Their Dependence on Synthetic Methods // IEEE transactions on industry applications. 2004. Vol. 40, no.5, pp. 1215-1219.
12. Синицын Н.И. и др. Изучение влияния геометрических параметров на эмиссионные свойства углеродных нанотрубок с металлической проводимостью // Нанотехника. 2007. № 9. С. 3-6.
13. Бурштейн К.Я., Шорыгин П.П. Квантовохимические расчеты в органической химии и молекулярной спектроскопии. М.: Наука, 1989. – 104с.
14. Neese F., ORCA- ab initio. Density Functional and Semiempirical Program Package
15. (v. 2.8.0), Universitat Bonn. (2009).
16. Весke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior // Phys. Rev. A. 1988. 38, pp. 3098-3100.
17. Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas // Phys. Rev. A. 1986. 33. pp. 8822-8824.
18. Schaefer A., Horn H., Ahlrichs R. J. Fully optimized contracted Gaussian-basis sets for atoms Li to Kr. // Chem. Phys. 1992. 97, pp. 2571-2577.
Review
For citations:
Petrushenko I.K., Ivanov N.A. Adiabatic and vertical ionization potentials of single-walled carbon nanotubes. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(6):70-74. (In Russ.)