Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Simulation of a quasi-ballistic quantum-barrier field-effect transistor based on GaAs quantum wire

https://doi.org/10.17586/2220-8054-2025-16-2-183-191

Abstract

A new constructive solution of field-effect transistor (FET) with a Schottky barrier in a conducting channel has been identified. The FET is a quasi-ballistic quantum-barrier transistor based on a cylindrical undoped GaAs quantum wire in Al2O3 matrix surrounded by a cylindrical metallic gate. A technique for determining the optimal variation of the semiconductor quantum wire diameter along its axis has been developed. The optimal dependence of the nanowire diameter on the spatial coordinate along its axis has been determined providing the possibility of both the elimination of quantum barrier for electrons by the positive gate voltage and the minimization of transistor channel electrical resistance in contrast to a typical FET with a Schottky barrier in its conducting channel. The current-voltage characteristics of the transistor based on GaAs quantum wire with an optimal cross-section have been calculated within the framework of a developed combined physico-mathematical model describing the electron transport in the transistor channel. This model takes into account the nonparabolicity of the semiconductor band structure, the quantum-dimensional effects, and such secondary quantum effects as the collisional broadening and displacement of electron energy levels.

About the Authors

D. V. Pozdnyakov
Belarusian State University
Belarus

Dmitry V. Pozdnyakov

Minsk, Nezavisimosti Av.4, 220030



A. V. Borzdov
Belarusian State University
Belarus

Andrei V. Borzdov

Minsk, Nezavisimosti Av.4, 220030



V. M. Borzdov
Belarusian State University
Belarus

Vladimir M. Borzdov

Minsk, Nezavisimosti Av.4, 220030



References

1. Weste N.H.E., Money Harris D. CMOS VLSI Design: A circuits and systems perspective. Addison-Wesley, Boston, 2010, 659 p.

2. Cheng H., Yang Z., Zhang C., Xie C., Liu T., Wang J., Zhang Z. A new approach to modeling ultrashort channel ballistic nanowire GAA MOSFETs. Nanomaterials, 2022, 12(19), P. 3401-1–13.

3. Cheng H., Liu T., Zhang C., Liu Z., Yang Z., Nakazato K., Zhang Z. Nanowire gate-all-around MOSFETs modeling: ballistic transport incorporating the source-to-drain tunneling. Jpn. J. Appl. Phys., 2020, 59(7), P. 074002-1–20.

4. Burke A.M., Carrad D.J., Gluschke J.G., Storm K., Fahlvik Svensson S., Linke H., Samuelson L., Micolich A.P. InAs nanowire transistors with multiple, independent wrap-gate segments. Nano Lett., 2015, 15(5), P. 2836–2843.

5. Ullah A.R., Meyer F., Gluschke J.G., Naureen S., Caroff P., Krogstrup P., Nygard J., Micolich A.P. p-GaAs nanowire metal–semiconductor field-effect transistors with near-thermal limit gating. Nano Lett., 2018, 18(9), P. 5673–5680.

6. Peng L.-M. High-performance carbon nanotube thin-film transistor technology. ACS Nano, 2023, 17(22), P. 22156–22166.

7. Benjelloun M., Zaidan Z., Soltani A., Gogneau N., Morris D., Harmand J.-Ch. Design, simulation and optimization of an enhanced vertical GaN nanowire transistor on silicon substrate for power electronic applications. IEEE Access, 2023, 11, P. 40249–40257.

8. Xu L., Xu L., Li Q., Fang Sh., Li Y., Guo Y., Wang A., Quhe R., Yee Sin A., Lu J. Sub-5 nm gate-all-around InP nanowire transistors toward high-performance devices. ACS Appl. Electron. Mat., 2024, 6(1), P. 426–434.

9. Fuad M.H., Nayan Md.F., Raihan Md.A., Yeassin R., Mahmud R.R. Performance analysis of graphene field effect transistor at nanoscale regime. e-Prime – Adv. Electr. Eng., Electron. Energy, 2024, 9, P. 100679-1–7.

10. Rezgui H., Mukherjee Chhandak, Wang Y., Deng M., Kumar A., Muller J., Larrieu G., Maneux C. Nanoscale thermal transport in vertical gate- ¨ all-around junction-less nanowire transistors-part II: multiphysics simulation. IEEE Trans. Electron Devices, 2023, 70(12), P. 6505–6511.

11. Nazir G., Rehman A., Park S.-J. Energy-efficient tunneling field-effect transistors for low-power device applications: challenges and opportunities. ACS Appl. Mater. Interfaces, 2020, 12(42), P. 47127–47163.

12. Mah S.K., Ker P.J., Ahmad I., Zainul Abidin N.F., Ali Gamel M.M. A feasible alternative to FDSOI and FinFET: optimization of W/La2O3/Si planar PMOS with 14 nm gate-length. Materials, 2021, 14(19), P. 5721-1–15.

13. Zahoor F., Hanif M., Isyaku Bature U., Bodapati S., Chattopadhyay A., Azmadi Hussin F., Abbas H., Merchant F., Bashir F. Carbon nanotube field effect transistors: an overview of device structure, modeling, fabrication and applications. Phys. Scr., 2023, 98(8), P. 082003-1–34.

14. Cerdeira A., Estrada M., de Souza M., Pavanello M.A. Analytical model for the drain and gate currents in silicon nanowire and nanosheet MOS transistors valid between 300 and 500 K. Int. J. Numer. Model., 2024, 37(2), P. 3219-1–12.

15. Hashmi F., Nizamuddin M., Farshori M.A., Amin S.U., Khan Z.I. Graphene nanoribbon FET technology-based OTA for optimizing fast and energy-efficient electronics for IoT application: Next-generation circuit design. Micro & Nano Lett., 2024, 19(6), P. e70002-1–15.

16. Gupta S., Nandi A. Effect of air spacer in underlap GAA nanowire: an analogue/RF perspective. IET Circ. Dev. Syst., 2019, 13(8), P. 1196–1202.

17. Leonard F., Alec Talin A. Electrical contacts to one- and two-dimensional nanomaterials. Nature Nanotech., 2011, 6(12), P. 773–783.

18. Appenzeller J., Knoch J., Bjork M.T., Riel H., Schmid H., Riess W. Toward nanowire electronics. IEEE Trans. Electron Devices, 2008, 55(11), P. 2827–2845.

19. Memisevic E., Svensson J., Hellenbrand M., Lind E., Wernersson L.-E. Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mV/decade and Ion = 10 µA/µm for Ioff = 1 nA/µm at VDS = 0.3 V. IEEE Int. Electron Devices Meeting (IEDM, San Francisco), 2016, 19.1.1–4.

20. Carrillo Nunez H. Combining the modified local density approach with variational calculus: a flexible tandem for studying electron transport in nano-devices. PhD thesis, Antwerp, 2012, 127 pp.

21. Datta S. Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge, 1995, 377 pp.

22. Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Simulation of a vertical ballistic quantum-barrier field-effect transistor based on an undoped AlxGa1–xAs quantum nanowire. Rus. Microelectronics, 2023, 52(6), P. 483–492.

23. Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Calculation of electrophysical characteristics of semiconductor quantum wire device structures with one-dimensional electron gas. Rus. Microelectronics, 2023, 52(Suppl.1), P. S20–29.

24. Pozdnyakov D.V., Borzdov V.M. Modeling of electrophysical properties of device structures with one-dimensional electron gas. BSU, Minsk, 2025, 191 p. (in Russian).

25. Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Peculiarities of electron transport through the contact regions between semiconductor quantum wires with different cross sections. Nanobiotechnology Reports, 2024, 19(Suppl.1), P. S117–S123.

26. Neverov V.N., Titov A.N. Physics of low-dimensional systems. UrSU, Ekaterinburg, 2008, 240 p. (in Russian).

27. Radantsev V.F. Electronic properties of semiconductor nanostructures. UrSU, Ekaterinburg, 2008, 420 p. (in Russian).

28. Davydov A.S. Quantum mechanics. Pergamon Press, Oxford, 1976, 636 p.

29. Landau L.D., Lifshitz E.M. Quantum mechanics. Non-relativistic theory. Pergamon Press, Oxford, 1991, 677 p.

30. Shamala K.S., Murthy L.C.S., Narasimha R.K. Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method. Mat. Sci. Eng. B, 2004, 106(3), P. 269–274.

31. Levinshtein M., Rumyantsev S., Shur M. Handbook series on semiconductor parameters, Vol. 2: Ternary and quaternary III-V compounds. World Scientific Publishing Co. Pte. Ltd., Singapore, 1999, 205 p.

32. Baltenkov A.S., Msezane A.Z. Electronic quantum confinement in cylindrical potential well. Eur. Phys. J. D, 2016, 70(4), 81-1–9.

33. Gulyamov G., Gulyamov A.G., Davlatov A.B., Shahobiddinov B.B. Electron energy in rectangular and cylindrical quantum wires. Journal of Nano- and Electronic Physics, 2020, 12(4), 04023-1–5.

34. Harrison P., Valavanis A. Quantum wells, wires and dots. Theoretical and computational physics of semiconductor nanostructures. Wiley, Chichester – Hoboken, 2016, 598 p.

35. Pozdnyakov D. Influence of surface roughness scattering on electron low-field mobility in thin undoped GaAs-in-Al2O3 nanowires with rectangular cross-section. Phys. Status Solidi (b), 2010, 247(1), P. 134–139.

36. Lopez-Villanueva J.A., Melchor I., Cartujo P., Carceller J.E. Modified Schrodinger equation including nonparabolicity for the study of a twodimensional electron gas. Phys. Rev. B, 1993, 48(3), P. 1626–1631.

37. Borzdov V.M., Komarov F.F. Simulation of electrophysical properties of solid-state layered structures of integrated electronics. BSU, Minsk, 1999, 236 p. (in Russian).

38. Yamamoto H. Resonant tunneling condition and transmission coefficient in a symmetrical one-dimensional rectangular double-barrier system. Appl. Phys. A, 1987, 42, P. 245–248.

39. Borzdov A.V., Pozdnyakov D.V., Galenchik V.O., Borzdov V.M., Komarov F.F. Self-consistent calculations of phonon scattering rates in the GaAs transistor structure with one-dimensional electron gas. Phys. Status Solidi (b), 2005, 242(15), P. R134–R136.

40. Pozdnyakov D.V., Galenchik V.O., Borzdov A.V. Electron scattering in thin GaAs quantum wires. Phys. Low-Dim. Struct., 2006, 2, P. 87–90.

41. Borzdov A.V., Pozdnyakov D.V. Scattering of electrons in the GaAs/AlAs transistor structure. Phys. Solid State, 2007, 49(5), P. 963–967.

42. Pozdnyakov D., Galenchik V., Borzdov A., Borzdov V., Komarov F. Influence of scattering processes on electron quantum states in nanowires. Nanoscale Res. Lett., 2007, 2(4), P. 213–218.

43. Abramov I.I. Problems and principles of physics and simulation of micro- and nanoelectronics device structures. IV. Quantum-mechanical formalisms. Nano- and Microsystem Technology, 2007, 9(2), P. 24–32. (in Russian).

44. Thijssen J. Computational physics. Cambridge University Press, Cambridge, 2012, 620 p. [

45. Gubernatis J.E., Kawashima N., Werner P. Quantum Monte Carlo methods: Algorithms for lattice models. Cambridge University Press, Cambridge, 2016, 512 p.


Review

For citations:


Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Simulation of a quasi-ballistic quantum-barrier field-effect transistor based on GaAs quantum wire. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):183-191. https://doi.org/10.17586/2220-8054-2025-16-2-183-191

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)