Магнито-зависимая фотолюминесценция нанокристаллов тетрацена
https://doi.org/10.17586/2220-8054-2025-16-4-419-426
Аннотация
Нанокристаллы тетрацена, полученные методом переосаждения, исследованы с использованием методов стационарного оптического поглощения и люминесценции, а также методом магниточувствительной фотолюминесценции. Спектры стационарного поглощения указывают на то, что наночастицы тетрацена обладают кристаллической структурой. Зависимость фотолюминесценции от магнитного поля для наночастиц тетрацена почти в 40 раз слабее, чем для макрокристаллов тетрацена. Этот результат интерпретируется в рамках теоретической модели, основанной на решении уравнения диффузии для ограниченного сферического объема. Расчеты зависимости фотолюминесценции от магнитного поля на основе теоретической модели показывают, что уменьшение магнитного эффекта зависит от размера сферического объема. Согласно теоретической модели, это уменьшение может быть связано с увеличением скорости триплет-триплетной аннигиляции в ограниченном нанообъеме.
Об авторах
М. Г. КучеренкоРоссия
Оренбург 460018, Россия
С. А. Пеньков
Россия
Оренбург 460018, Россия
Список литературы
1. Kavokin K.V. Cooling of the Nuclear Spin System of a Nanostructure by Oscillating Magnetic Fields. Nanomaterials, 13, P. 2120.
2. Chmereva T.M., Kucherenko M.G., Mushin F.Yu., Rusinov A.P. Luminescence of Dye Molecules in Polymer Films with Plasmonic Nanoparticles. Journal of Applied Spectroscopy, 2024, 91, P. 1–9.
3. Ignatiev V., Gerlovin I.Ya., Verbin S.Yu., Maruyama W., Pal B. and Masumoto Y. Effect of Nuclear Spins on the Electron Spin Dynamics in Negatively Charged InP Quantum Dots. Int. J. Nanosci., 2007, 06, P. 275–278.
4. Kislov D., Ofer D., Machnev A., Barhom H., Bobrovs V., Shalin A., Ginzburg P. Optothermal Needle-Free Injection of Vaterite Nanocapsules. Advanced Science, 2024, 11, P. 2305202.
5. Kolyvanova M.A., Klimovich M.A., Dement’eva O.V., Rudoy V.M., Kuzmin V.A., Trofimov A.V., Morozov V.N. Interaction of Gold Nanoparticles with Cyanine Dyes in Cholesteric DNA Submicroparticles: Impact of the Way of Their Introduction into the System, Russ. J. Phys. Chem. B, 2023, 17, P. 206–214.
6. Kucherenko M.G., Kislov D.A. Plasmon-activated intermolecular nonradiative energy transfer in spherical nanoreactors. J. Photochem. Photobiol. A: Chem., 2018, 354, P. 25–32.
7. Shockley W., Queisser H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys., 1961, 32, P. 510.
8. Tayebjee M.J.Y., McCamey D.R., Schmidt T.W. Beyond Shockley–Queisser: Molecular Approaches to High-Efficiency Photovoltaics. J. Phys. Chem. Lett., 2015, 6, P. 2367–2378.
9. Ibrayev N.Kh., Valiev R.R., Seliverstova E.V., Menshova E.P., Nasibullinb R.T., Sundholm D. Molecular phosphorescence enhancement by the plasmon field of metal nanoparticles. Phys. Chem. Chem. Phys., 2024, 26, P. 14624–14636.
10. Merrifield R.E., Avakian P., Groff R.P. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett., 1969, 3, P. 155.
11. Saletskii A.M., Mel’nikov A.G., Pravdin A.B., Kochubei V.I., Mel’nikov G.V. Structural Changes in Human Serum Albumin According to the Data on the Phosphorescence Kinetics of a Luminescent Probe — Eosin. J. Appl. Spectr., 2015, 72, P. 723–727.
12. Dzhagarov B.M., Lepeshkevich S.V. Photonics of the Hemoglobin Active Site. High Energy Chem., 2010, 44, P. 127–129.
13. Ishemgulov A.T., Letuta S.N., Pashkevich S.N., Alidzhanov E.K. & Lantukh Yu.D. Long-term luminescence of sensibilizers in tissues at the conditions of oxygen deficiency due to photodynamic effect. Opt. Spectrosc., 2017, 123, P. 828–834.
14. A.A. Krasnovsky Jr., Ambartzumian R.V. Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameters of the 1∆g ←3 Σ- g transition in oxygen molecules. Chem. Phys. Lett., 2004, 400, P. 531–535.
15. Gorbunova I.A., Sasin M.E., Zhikhoreva A.A., Belashov A.V., Beltukova D.M., Semenova I.V., Vasyutinskii O.S. Fluorescence Anisotropy in Radachlorin and Chlorin e6 in Water–Methanol Solutions under One- and Two-Photon Excitation. Photonics, 2023, 10, P. 9.
16. Tsibulnikova A.V., Zemlyakova E.S., Slezhkin V.A., Samusev I.G., Lyatun I.I., Artamonov D.A., Zyubin A.Y., and Bryukhanov V.V. Photophysics of singlet oxygen generation in chitosan films with viburnum fruit extract (Viburnum opulus L.) under the influence of plasmons on a modified titanium surface. Journal of Optical Technology, 2024, 91, P. 334–341.
17. Gerasimov K.I., Moiseev S.A., Morosov V.I., Zaripov R.B. Room-temperature storage of electromagnetic pulses on a high-finesse natural spinfrequency comb. Phys. Rev. A., 2014, 90, P. 042306.
18. Shushin A.I., Umanskii S.Ya. The Manifestation of Spin-Selectivity of the Singlet Exciton Decay into a Pair of Triplets in the Kinetics of the Exciton Decay in Rubrene Films. Russ. J. Phys. Chem., 2024, 18, P. 1635–1640.
19. Shushin A.I., Umanskii S.Ya., Chaikina Ju.A. Kinetics of the Decay of Excited Singlet State into a Pair of T-Excitons in Rubrene Films: Mechanism and Manifestation of Exciton Migration. Russ. J. Phys. Chem., 2023, 17, P. 1403–1408.
20. Kucherenko M.G., Penkov S.A. Triplet exciton reactions in MEH-PPV films registered by accompanying magneto-sensitive photoluminescence. Journal of Photochemistry & Photobiology, A: Chemistry, 2023, 437, P. 114440.
21. Penkov S.A. Magnetic Field-Effect on Photoluminescence of Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) Nanoparticles in a Poly[vinyl butyral] Matrix. J. Macromol. Sci. Part B: Phys., 2020, 59, P. 366–375.
22. Hofberger W. Structure and optical properties of polycrystalline evaporated tetracene films. Phys. Status Solidi A., 1975, 30, P. 271–278.
23. Kim H.Y., Bjorklund T.G., Lim S.-H., Bardeen C.J. Spectroscopic and Photocatalytic Properties of Organic Tetracene Nanoparticles in Aqueous Solution. Langmuir, 2003, 19, P. 3941–3946.
24. Sun T., Shen L., Liu H., Sun X., Li X. Synthesis and photophysical properties of a single bond linked tetracene dimer. J. Mol. Struct., 2016, 1116, P. 200–206.
25. Lim S.-H., Bjorklund T.G., Spano F.C., Bardeen C.J. Exciton Delocalization and Superradiance in Tetracene Thin Films and Nanoaggregates. Phys. Rev. Lett., 2004, 92, P. 107402.
26. Geacintov N., Pope M., Vogel F. Effect of Magnetic Field on the Fluorescence of Tetracene Crystals: Exciton Fission. Phys. Rev. Lett., 1968, 22, P. 593.
27. Bouchriha H., Ern V., Fave J.L., Guthmann C., Schott M. Magnetic field dependence of singlet exciton fission and fluorescence in crystalline tetracene at 300 K. Journal de Physique, 1978, 39, P. 257–271.
28. Smith M.B., Michl J. Recent Advances in Singlet Fission. Annu. Rev. Phys. Chem., 2013, 64, P. 361–386.
29. Lukman S. et al. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nat. Commun., 2016, 7, P. 13622.
30. Wakasa M., Yago T., Sonoda Y., Katoh R. Structure and dynamics of triplet-exciton pairs generated from singlet fission studied via magnetic field effects. Communications Chemistry, 2018, 1, P. 9.
31. Donnini J.M. and Abetino F. Fluorescence du naphtacene. Effet magnetique. Compt. Rend., 1968, 266B, P. 618–1621.
32. Kucherenko M.G., Penkov S.A., Neyasov P.P. Diffusion-controlled annihilation reactions in 2D and 3D nanostructures. Materials Today: Proceedings, 2022, 71, P. 124–129.
33. Dexter D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys., 1953, 21, P. 836–850.
34. Kucherenko M.G., Dusembaev R.N. Positive magnetic field effect on mutual triplet–triplet annihilation of mixed molecular pairs: Magnetosensitive geterofusion induced by difference of g-factors. Chem. Phys. Lett., 2010, 487, P. 58–61.
35. Kucherenko M.G., Penkov S.A. Triplet exciton reactions in MEH-PPV films registered by accompanying magneto-sensitive photoluminescence. Journal of Photochemistry & Photobiology, A: Chemistry, 2023, 437, P. 114440.
Рецензия
Для цитирования:
Кучеренко М.Г., Пеньков С.А. Магнито-зависимая фотолюминесценция нанокристаллов тетрацена. Наносистемы: физика, химия, математика. 2025;16(4):419-426. https://doi.org/10.17586/2220-8054-2025-16-4-419-426
For citation:
Kucherenko M.G., Penkov S.A. Magnetically dependent photoluminescence of tetracene nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):419-426. https://doi.org/10.17586/2220-8054-2025-16-4-419-426