Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Modeling of graphitization in CVD diamond under the action of laser radiation

https://doi.org/10.17586/2220-8054-2025-16-4-427-436

Abstract

A model describing the graphitization of CVD diamond under the action of femtosecond laser radiation is proposed. The model combines thermal and kinetic aspects, taking into account the phase transition of diamond into graphite upon reaching critical conditions (temperature or charge carrier density). A mathematical model of the temperature field for a laser source is presented taking into account the dependencies for enthalpy and polarization. A mathematical model of the diamond-graphite phase transition under laser radiation is developed within the framework of the charge carrier density equation. The governing equations were presented in finite-difference form and discretized using a five-point stencil on a uniform grid. The finite-difference equations were solved using the explicit Euler scheme. Numerical simulation of diamond graphitization allowed us to estimate the key features of the initial stage of the process.

About the Authors

D. N. Bukharov
A. G. and N. G. Stoletov Vladimir State University
Russian Federation

Dmitry N. Bukharov

7 Gorykogo st, 600000, Vladimir, Russia



T. A. Khudaiberganov
A. G. and N. G. Stoletov Vladimir State University
Russian Federation

Timur A. Khudaiberganov

7 Gorykogo st, 600000, Vladimir, Russia



A. O. Kucherik
A. G. and N. G. Stoletov Vladimir State University
Russian Federation

Alexey O. Kucherik 

7 Gorykogo st, 600000, Vladimir, Russia



S. M. Arakelian
A. G. and N. G. Stoletov Vladimir State University
Russian Federation

Sergey M. Arakelian

7 Gorykogo st, 600000, Vladimir, Russia 



References

1. Araujo D., Suzuki M., Lloret F., et al. Diamond for Electronics: Materials, Processing and Devices. Materials, 2021, 14, P. 1–25.

2. Wort C.J.H., Balmer R.S. Diamond as an electronic material. Materials Today, 2008, 11, P. 22–28.

3. Barclay P. E., Fu K.-M., Jelezko F., et al. Diamond photonics: introduction. J. Opt. Soc. Am. B, 2016, 33, P. 1–10.

4. Dory C., Vercruysse D., Yang K.Y., et al. Inverse-designed diamond photonics. Nat Commun., 2019, 10, P. 1–7.

5. Shamrakov A., Efimov P., Alshevsky Yu., et al. Temperature sensors based on a single crys-tal of synthetic diamond. Nanoindustry, 2010, 3, P. 26–28.

6. Hahl F.A., Lindner L., Vidal X., et al. Magnetic-field-dependent stimulated emission from nitrogen-vacancy centers in diamond. Sci. Adv., 2022, 8(22), P. 1–9.

7. Zalieckas J., Greve M.M., Bellucci L., et al. Quantum sensing of microRNAs with nitrogen-vacancy centers in diamond. Commun Chem., 2024, 7, P. 1–10.

8. Savvin A., Dormidonov A., Smetanina E., et al. NV – diamond laser. Nat Commun., 2021, 12, P. 1–8.

9. Kuriakose A., Chiappini A., Sotillo B., et al. Fabrication of conductive micro electrodes in diamond bulk using pulsed Bessel beams. Diamond and Related Materials, 2023, 136, P. 1–10.

10. Gramala M., Sikora A., Chudzynska A., et al. Highly Conductive Paths in Diamond and their Application in High Pressure Measurements. ´ ACS Applied Materials & Interfaces, 2024, 16(43), P. 59528–59535.

11. Kononenko V.V., Zavedeev E.V., Kononenko T.V., et al. Cleavage-Driven Laser Writing in Monocrystalline Diamond. Photonics, 2023, 10(43), P. 1–10.

12. Ali B., Xu H., Chetty D., et al. Laser-Induced Graphitization of Diamond Under 30 fs Laser Pulse Irradiation. J. Phys. Chem. Lett., 2022, 13(12), P. 2679–2685.

13. Shershnev E.B., Nikityuk Yu.V., Shershnev A.E. Modeling of laser processing of diamond crystals. Proceedings of Gomel State University named after F. Skorina, 2011, 6(69), P. 164–168.

14. Yuan H., Song C., Zhang C., et al. Simulation study on the effect of different wavelengths of laser on graphitization of diamond surface. Journal of Physics: Conference Series, 2023, 2566, P. 1–7.

15. Chen Y., Zhang S., Liu J., et al. Numerical Simulation of Temperature Characteristics and Graphitization Mechanism of Diamond in Laser Powder Bed Fusion. Materials, 2023, 16(18), P. 1–7.

16. Cui X., Li G., et al. Molecular dynamics simulation of laser-induced graphitization of CVD diamond. Proc. SPIE12169, Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, 2022, P. 1216941.

17. Arsentiev M.Y. Investigation of graphitization of diamond surface with orientation [111] using the method of molecular dynamics. Physics and Chemistry of Glass, 2021, 47(3), P. 345–349.

18. Bukharov D.N., Kononenko T.V., Kucherik A.O. Simulation phenomenological model of laser-induced graphitized structures in diamond. Letters to the JTP, 2025, 51(1), P. 26–29.

19. Bukharov D.N., Samyshkin V.D., Lelekova A.F., et al. Modeling the structure and electrophysical properties of graphitized regions in artificial diamond. South Siberian Scientific Bulletin, 2024, 6, P. 57–64.

20. Ferrah I., Benmahamed, Y., et al. A new box-counting-based-image fractal dimension estimation method for discharges recognition on polluted insulator model. IET Science, Measurements and Technology, 2025, 19(1), P. 1-14.

21. Ashikkalieva K.K., Kononenko T.V., Konov V.I. Graphitization wave in diamond induced by uniformly moving laser focus. Optics & Laser Technology, 2018, 107, P. 204–209.

22. Kononenko T.V., Komlenok M.S., Pashinin V.P., et al. Femtosecond laser microstructuring in the bulk of diamond. Diamond and Related Materials, 2009, 18, P. 196–199.

23. Gulina Yu.S. Measurement of the two-photon absorption coefficient of ultrashort laser pulses with a wavelength of 1030 nm on color centers of natural diamond. Optics and Spectroscopy, 2022, 130(4), P. 540–543.

24. Vaskovskaya M.I., Vasiliev V.V., Zibrov S.A., et al. Amplitude-phase modulation and emission spectrum of a vertical-cavity diode laser. Quantum Electronics, 2017, 47(9), P. 835–841.

25. Berman R. The diamond-graphite equilibrium calculation: The influence of a recent determina-tion of the Gibbs energy difference. Solid State Communications, 1996, 99(1), P. 35–37.

26. Kobelev N.P. Khonic V.A. On the Enthalpy and Entropy of Formation of Point Defects in Crystals. Journal of Experimental and Theoretical Physics, 2018, 153(3), P. 409–416.

27. Shevchenko V.Ya., Perevislov S.N., Nozhkina A.V., et al. High-Temperature Graphitization of Diamond during Heat Treatment in Air and in Vacuum. Glass Physics and Chemistry, 2024, 50(2), P. 115–134.

28. Roy C.J., Blottner F.G. Review and assessment of turbulence models for hypersonic flows. Progress in Aerospace Sciences, 2006, 42(7–8), P. 469–530.

29. Benintendi R. Process Safety Calculations, Elsevier, Basel, 2018, 300 p.

30. Ning C.Z., Indik R.A., Moloney J.V. Effective Bloch Equations for Semiconductor Lasers and Amplifiers. IEEE Journal of quantum electronics, 1997, 33(9), P. 1543–1550.

31. Pimenov V.G. Difference methods for solving partial differential equations with heredity, Yekaterinburg, Ural University Publishing House, 2014, 150 p.

32. Toumannen B. GPU programming using Python and CUDA, Moscow, DMK Press, 2020, 300 p.

33. Kong Q., Siauw T., Bayen A. Python Programming and Numerical Methods, Academic Press, 2020, 210 p.

34. Grivickas P.P., et al. Carrier recombination and diffusion in high-purity diamond after electron irradiation and annealing. Appl. Phys. Lett., 2020, 117(24), P. 242103-1–242103-6.

35. Sze M., Ng K.K. Physics of Semiconductor Devices. Hoboken, New Jersey, Simon John Wiley & Sons, Inc., 2006, 832 p.

36. Wort C.J.H., Balmer R.S. Diamond as an electronic material. Materials Today, 2008, 11(1–2), P. 22–28.

37. Linnik S.A. Zenkin S.P., Gaidaichuk A.V. Heteroepitaxial growth of diamond from the gas phase: problems and prospects (review). Instruments and experimental techniques, 2021, 2, P. 5–18.

38. Stankus S.V., Savchenko I.V., et al. Thermophysical properties of graphite MPG-6. TVT, 2013, 51(2), P. 205–209.

39. Moelle C., et al. Specific heat of single-, poly- and nanocrystalline diamond. Diamond and Related Materials, 1998, 7(2–5), P. 499–503.

40. Zhu S., et al. A Revisited Mechanism of the Graphite-to-Diamond Transition at High Temperature. Matter, 2020, 3(3), P. 864–878.

41. Hannes W.R., Ciappina M.F. Two-photon absorption in semiconductors: A multiband length gauge analysis. Physical Review B, 2022, 106(11), P. 115204.

42. Smausz T., et al. Determination of UV–visible–NIR absorption coefficient of graphite bulk using direct and indirect methods. Applied Physics A, 2017, 123, P. 633.

43. Thomas M.E., Tropf W.J. Optical properties of diamond. Johns Hopkins APL Technical Digest, 1993, 14(1), P. 16–23.

44. Wang X., Chen Y.P., Nolte D.D. Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology. Opt. Express, 2008, 16, P. 22105–22112.

45. Khorkov K.S., Podoprigora Ya.V., Burakova I.V., et al. Synthesis of allotropic forms of carbon in a laser experiment: 1D-3D topological configurations with carbon nanotubes and diamond-like systems. Bulletin of the Russian Academy of Sciences: Physics, 2024, 88(12), P. 2022–2033.

46. Neff M., Kononenko T.V., Pimenov S.M., et al. Femtosecond laser writing of buried graphitic structures in bulk diamond. Appl. Phys. A, 2009, 97, P. 543–547.

47. Kononenko V., et al. Highly oriented graphite produced by femtosecond laser on diamond. Applied Physics Letters, 2019, 114, P. 251903.

48. Bukharov D.N., et al. Mathematical modeling of the structure and optical properties of the fractal island metal nanofilm. J. Phys.: Conf. Ser., 2020, 1439, P. 012050.

49. Arakelian S.M., Kucherik A.O., Khudaberganov T.A. et al. Nanophysics in laser-induced cluster systems: topological quantum states in electrical conductivity and features of optical spectra—theory and experiment for dimensional effects. Opt Quant Electron., 2020, 52, P. 202.


Review

For citations:


Bukharov D.N., Khudaiberganov T.A., Kucherik A.O., Arakelian S.M. Modeling of graphitization in CVD diamond under the action of laser radiation. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):427-436. https://doi.org/10.17586/2220-8054-2025-16-4-427-436

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)