Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Ionic conductivity in nanopipettes: experiment and model

https://doi.org/10.17586/2220-8054-2025-16-4-441-449

Abstract

This work investigates ion transport in glass nanopipettes with tip diameters in the range of 80–100 nm, filled with phosphate-buffered saline. A combination of experimental measurements and theoretical modeling is employed. A coupled Poisson-Nernst-Planck-Navier-Stokes model is used to describe the ion transport, incorporating electroosmotic flow, electrophoresis and interionic effects. The theoretical results are in good agreement with experimental current to voltage characteristics. Comparison between modeled and measured data enables estimation of nanopipette geometry with good accuracy. The simulations also reveal characteristic spatial distributions of ionic flow in the aperture area of the nanopipette tip, governed by electroosmosis and the tip shape. These findings provide insights into nanoscale ion transport phenomena relevant for analytical and biological applications.

About the Authors

S. Yu. Lukashenko
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Stanislav Yu. Lukashenko

Saint Petersburg 



O. M. Gorbenko
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Olga M. Gorbenko

Saint Petersburg



M. L. Felshtyn
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Mikhail L. Felshtyn

Saint Petersburg 



I. D. Sapozhnikov
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Ivan D. Sapozhnikov

Saint Petersburg 



D. A. Kirilenko
Ioffe Institute
Russian Federation

Demid A. Kirilenko

Saint Petersburg 



S. V. Pichakhchi
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Stepan V. Pichakhchi

Saint Petersburg 



M. V. Zhukov
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Mikhail V. Zhukov

Saint Petersburg 



A. O. Golubok
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Alexander O. Golubok

Saint Petersburg 



References

1. Yaul, M.; Bhatti, R.; Lawrence, S. Evaluating the process of polishing borosilicate glass capillaries used for fabrication of in-vitro fertilization(iVF) micro-pipettes. Biomed Microdevices. 2008, 10, 123–128.

2. Brown K.T. Flaming D.G. Advanced micropipette techniques for cell physiology. Wiley, San Francisco, 1995.

3. Sakmann B., Neher E. Single-channel recording. Plenum Press, New York, 1983.

4. Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature, 1976, 260, P. 799–802.

5. Page A., Perry D., Unwin P.R. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A., 2017, 473, P. 20160889.

6. Stuber A., Schlotter T., Hengsteler J., Nakatsuka N. Solid-State Nanopores for Biomolecular Analysis and Detection. In: Lisdat F., Plumere, N. ´ (eds) Trends in Biosensing Research. Advances in Biochemical Engineering/Biotechnology, Springer, Cham, 2023, 1, P. 187.

7. Wang X.F., Duan Y.F., Zhu Y.Q., Liu Z.J., Wu Y.C., Liu T.H., Zhang L., Wei J.F., Liu G.C. An insulin-modified pH-responsive nanopipette based on ion current rectification. Sensors, 2024, 24(13), P. 4264.

8. Wang Y., Kececi K., Mirkin M.V., Mani V., Sardesai N., Rusling J.F. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci., 2013, 4(2), P. 655–663.

9. Kececi K., Dinler A., Kaya D. Review – Nanopipette applications as sensors, electrodes, and probes: A study on recent developments. J. Electrochem. Soc., 2022, 169(2), P. 027502.

10. Xu C., Yang D., Wang Y., Liu R., Wang F., Tian Z., Hu K. Micro/nanoelectrode-based electrochemical methodology for single cell and organelle analysis. Nano Research, 2024, 17(1), P. 196–206.

11. Sze J.Y.Y., Ivanov A.P., Cass A.E.G. et al. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun., 2017, 8, P. 1552.

12. Nitz H., Kamp J., Fuchs H. A combined scanning ion-conductance and shear-force microscope. Probe Microsc., 1998, 7(1), P. 187–200.

13. Terejanszky P., Makra I., Furjes P., Gyurcsanyi R.E. Calibration-less sizing and quantitation of polymeric nanoparticles and viruses with quartz nanopipettes Anal. Chem., 2014, 86, P. 4688–4697.

14. Constantin D., Siwy Z. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E., 2007, 76, P. 041202.

15. Chaparro C.V., Herrera L.V., Melendez A.M., Miranda D.A. Considerations on electrical impedance measurements of electrolyte solutions in a ´four-electrode cell. J. Phys. Conf. Series, 2016, 687, P. 012101.

16. Perry D., Momotenko D., Lazenby R.A., Kang M., Unwin P.R. Characterization of nanopipettes. Anal. Chem., 2016, 88, P. 5523–5530.

17. Woermann D. Analysis of non-ohmic electrical current–voltage characteristic of membranes carrying a single track-etched conical pore. Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, 194, P. 458–462.

18. Woermann D. Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys. Chem. Chem. Phys., 2003, 5, P. 1853.

19. Cervera J., Schiedt B., Ramirez P.A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett., 2005, 71, P. 35.

20. Apel P., Korchev Y.E., Siwy Z., Spohr R., Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, 184, P. 337.

21. Tao D., Jiang L. & Jin M. A Method of preparation of Ag/AgCl chloride selective electrode. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2018, 33, P. 767–771.

22. Lukashenko S.Y. et al. Behavioral features of the approach curve of a scanning ion-conductance microscope. J. Surf. Investig, 2023, 17, P. 585–591.

23. Laurance N. Self-diffusion of the chlorine ion in sodium chloride. Phys. Rev., 1960, 120, P. 57–62.

24. Girault H.H. Analytical and Physical Electrochemistry. New York, EPFL Press, 2004.

25. Amadu M., Miadonye A. Determination of the point of zero charge PH of borosilicate glass surface using capillary imbibition method. Int. J. Chem., 2017, 9, P. 67–84.

26. Brown K.T., Flaming D.G. Advanced micropipette techniques for cell physiology, John Wiley & Sons, New York, 1986.

27. Rheinlaender J., Schaffer T.E. An accurate model for the ion current-distance behavior in scanning ion conductance microscopy allows for cali- ¨bration of pipet tip geometry and tip-sample distance. Anal. Chem., 2017, 89, P. 11875–11880.

28. Rabinowitz J., Edwards M.A., Whittier E., Jayant K., Shepard K.L. Nanoscale fluid vortices and nonlinear electroosmotic flow drive Ion current rectification in the presence of concentration gradients. J. Phys. Chem. A , 2019, 123(38), P. 8285–8293.


Review

For citations:


Lukashenko S.Yu., Gorbenko O.M., Felshtyn M.L., Sapozhnikov I.D., Kirilenko D.A., Pichakhchi S.V., Zhukov M.V., Golubok A.O. Ionic conductivity in nanopipettes: experiment and model. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):441-449. https://doi.org/10.17586/2220-8054-2025-16-4-441-449

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)