Effect of Si and Ti5Si3 on the adhesion at the α-Al2O3/γ-TiAl interface and oxygen diffusion in the alloy
https://doi.org/10.17586/2220-8054-2025-16-4-460-466
Abstract
The effect of silicon and Ti5Si3 films on the adhesion properties of the α-Al2O3/γ-TiAl interface and oxygen diffusion in TiAl was studied using the projector augmented-wave method within density functional theory. It was shown that the formation of intermediate silicide layers at the oxide–alloy interface can lead to a significant decrease in the oxygen diffusion coefficient. At the same time, adhesion at the oxide–silicide interface remains high, while for the silicide–alloy interface, the values of ∼2.26–2.80 J/m2 typical for interfaces with metallic and metal-covalent bonds were obtained.
Keywords
About the Authors
A. V. BakulinRussian Federation
Alexander V. Bakulin
Tomsk
L. S. Chumakova
Russian Federation
Lora S. Chumakova
Tomsk
S. E. Kulkova
Russian Federation
Svetlana E. Kulkova
Tomsk
References
1. Dufour L.C., Monty C., Petot-Ervas G. (eds.) Surfaces and interfaces of ceramic materials. Kluwer Academic Publishers, Dordrecht, 1989, 806 p.
2. Ruhle M., Evans A.G., Ashby M.F., Hirth J.P. (eds.) ¨ Metal-ceramic interfaces. Proceedings of an International Workshop. Pergamon Press, Oxford, 1990, 433 p.
3. Ishak M. (ed.) Joining technologies. IntechOpen, 2016, 282 p.
4. Finnis M.W. The theory of metal-ceramic interfaces. J. Phys.: Condens. Matter, 1996, 8(32), P. 5811–5836.
5. Zhao P., Li X., Tang H., Ma Y., Chen B., Xing W., Liu K., Yu J. Improved high-temperature oxidation properties for Mn-containing beta-gamma TiAl with W addition. Oxid. Met., 2020, 93, P. 433–448.
6. Wang J., Kong L., Wu J., Li T., Xiong T. Microstructure evolution and oxidation resistance of silicon-aluminizing coating on γ-TiAl alloy. Appl. Surf. Sci., 2015, 356, P. 827–836.
7. Gui W., Liang Y., Hao G., Lin J., Sun D., Liu M., Liu C., Zhang H. High Nb-TiAl-based porous composite with hierarchical micro-pore structure for high temperature applications. J. Alloys Compd., 2018, 744, P. 463–469.
8. Wu J.S., Zhang L.T., Wang F., Jiang K., Qiu G.H. The individual effects of niobium and silicon on the oxidation behaviour of Ti3Al based alloys. Intermetallics, 2000, 8, P. 19–28.
9. Bakulin A.V., Chumakova L.S., Kulkova S.E. Oxygen and nitrogen diffusion in titanium nitride. Phys. Mesomech., 2025, 28(1), P. 55–65.
10. Li X.Y., Taniguchi S., Matsunaga Y., Nakagawa K., Fujita K. Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy. Intermetallics, 2003, 11, P. 143–150.
11. Jiang H.R., Wang Z.L., Ma W.S., Feng X.R., Dong Z.Q., Zhang L., Liu Y. Effects of Nb and Si on high temperature oxidation of TiAl. Trans. Nonferrous Metals Soc. China, 2008, 18, P. 512–517.
12. Le H.L.T., Goniakowski J., Noguera C., Koltsov A., Mataigne J.M. First-principles study on the effect of pure and oxidized transition-metal buffers on adhesion at the alumina/zinc interface. J. Phys. Chem. C, 2016, 120(18), P. 9836–9844.
13. Bakulin A.V., Kulkov S.S., Kulkova S.E. Adhesion properties of the TiAl/Al2O3 interface. Izvestiya vuzov. Fizika, 2020, 63(5), P. 3–9. (in Russian)
14. Bakulin A.V., Kulkov S.S., Kulkova S.E., Hocker S., Schmauder S. First principles study of bonding mechanisms at the TiAl/TiO2 interface. Metals, 2020, 10(10), P. 1298.
15. Blochl P.E. Projector augmented-wave method. ¨ Phys. Rev. B, 1994, 50(24), P. 17953–17979.
16. Kresse S., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3), P. 1758–1775.
17. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), P. 3865–3868.
18. Bakulin A.V., Kulkov S.S., Kulkova S.E. Diffusion properties of oxygen in the γ-TiAl alloy. J. Exp. Theor. Phys., 2020, 134(4), P. 579–590.
19. Chang K.C., Payne U.J. Numerical treatment of diffusion coefficients at interfaces. Numer. Heat Transfer, Part A, 1992, 21(3), P. 363–376.
20. Landman U., Shlesinger M.F. Stochastic theory of multistate diffusion in perfect and defective systems. I. Mathematical formalism. Phys. Rev. B, 1979, 19(12), P. 6207–6219.
21. Bertin Y.A., Parisot J., Gacougnolle J.L. Modele atomique de diffusion de l’oxyg ` ene dans le titane ` α. J. Less-Common Met., 1980, 69(1), P. 121–138.
22. Bakulin A.V., Chumakova L.S., Kulkova S.E. Oxygen absorption and diffusion in Ti5Si3. Intermetallics, 2022, 146, P. 107587.
23. Prot D., Monty C. Self-diffusion in α-Al2O3 II. Oxygen diffusion in ‘undoped’ single crystals. Philos. Mag. A, 1996, 73(4), P. 899–917.
24. Moore D.K., Cherniak D.J., Watson E.B. Oxygen diffusion in rutile from 750 to 1000◦C and 0.1 to 1000 MPa. Am. Mineral., 1998, 83, P. 700–711.
25. Huang J., Zhao F., Cui X., Wang J., Xiong T. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy. Appl. Surf. Sci., 2022, 582, P. 152444.
Review
For citations:
Bakulin A.V., Chumakova L.S., Kulkova S.E. Effect of Si and Ti5Si3 on the adhesion at the α-Al2O3/γ-TiAl interface and oxygen diffusion in the alloy. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):460-466. https://doi.org/10.17586/2220-8054-2025-16-4-460-466