Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Surface electronic structure of TbIr2Si2 antiferromagnet

https://doi.org/10.17586/2220-8054-2025-16-4-467-471

Abstract

By means of ab initio density functional theory (DFT) calculations, we examined the surface electronic structure of the TbIr2Si2 antiferromagnet, which is distinguished by the out-of-plane alignment of Tb 4f moments and a high Neel temperature. We analyzed the interplay between the spin-orbit and exchange in- ´ teractions and their effect on the dispersion of surface states resided in the projected band gap around the M¯ point of the surface Brillouin zone, and compared our theoretical findings with low-temperature angle-resolved photoemission spectroscopy (ARPES) measurements.

About the Authors

D. A. Perminova
Institute of Strength Physics and Materials Science, Russian Academy of Sciences
Russian Federation

634055 Tomsk, Russia 



I. A. Shvets
St. Petersburg State University
Russian Federation

199034 St. Petersburg, Russia 



D. Yu. Usachov
St. Petersburg State University
Russian Federation

199034 St. Petersburg, Russia 



D. V. Vyalykh
St. Petersburg State University,
Russian Federation

199034 St. Petersburg, Russia 



S. V. Eremeev
Institute of Strength Physics and Materials Science, Russian Academy of Sciences; St. Petersburg State University
Russian Federation

634055 Tomsk, Russia

199034 St. Petersburg, Russia 



References

1. Stewart G.R. Heavy-fermion systems. Rev. Mod. Phys., Oct 1984, 56, P. 755–787.

2. Si Q., Steglich F. Heavy Fermions and Quantum Phase Transitions. Science, Sep 2010, 329, P. 1161–1166.

3. Chikina A., Hoppner M., Seiro S., Kummer K., Danzenb ¨ acher S., Patil S., Generalov A., G ¨ uttler M., Kucherenko Y., Chulkov E.V., et al. Strong ¨ ferromagnetism at the surface of an antiferromagnet caused by buried magnetic moments. Nature communications, 2014, 5(1), P. 3171.

4. Guttler M., Generalov A., Otrokov M.M., Kummer K., Kliemt K., Fedorov A., Chikina A., Danzenb ¨ acher S., Schulz S., Chulkov E.V., Koroteev ¨ Y.M., Caroca-Canales N., Shi M., Radovic M., Geibel C., Laubschat C., Dudin P., Kim T.K., Hoesch M., Krellner C., Vyalikh D.V. Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2. Scientific Reports, Apr. 2016, 6, P. 24254.

5. Generalov A., Otrokov M.M., Chikina A., Kliemt K., Kummer K., Hoppner M., G ¨ uttler M., Seiro S., Fedorov A., Schulz S., Danzenb ¨ acher S., ¨ Chulkov E.V., Geibel C., Laubschat C., Dudin P., Hoesch M., Kim T., Radovic M., Shi M., Plumb N.C., Krellner C., Vyalikh D.V. Spin Orientation of Two-Dimensional Electrons Driven by Temperature-Tunable Competition of Spin-Orbit and Exchange-Magnetic Interactions. Nano Letters, 2017, 17(2), P. 811–820.

6. Vyazovskaya A.Y., Otrokov M.M., Koroteev Y.M., Kummer K., Guttler M., Vyalikh D.V., Chulkov E.V. Origin of two-dimensional electronic ¨ states at Si- and Gd-terminated surfaces of GdRh2Si2(001). Phys. Rev. B, Aug 2019, 100, P. 075140.

7. Schulz S., Nechaev I., Guttler M., Poelchen G., Generalov A., Danzenbacher S., Chikina A., Seiro S., Kliemt K., Vyazovskaya A., Kim T., Dudin P., Chulkov E., Laubschat C., Krasovskii E., Geibel C., Krellner C., Kummer K., Vyalikh D. Emerging 2d-ferromagnetism and strong spin-orbit coupling at the surface of valence-fluctuating EuIr2Si2. npj Quantum Materials, 06 2019, 4, P. 26.

8. Schulz S., Vyazovskaya A.Y., Poelchen G., Generalov A., Guttler M., Mende M., Danzenb ¨ acher S., Otrokov M.M., Balasubramanian T., Polley ¨ C., Chulkov E.V., Laubschat C., Peters M., Kliemt K., Krellner C., Usachov D.Y., Vyalikh D.V. Classical and cubic Rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2. Phys. Rev. B, Jan 2021, 103, P. 035123.

9. Generalov A., Falke J., Nechaev I.A., Otrokov M.M., Guttler M., Chikina A., Kliemt K., Seiro S., Kummer K., Danzenb ¨ acher S., Usachov D., Kim ¨ T.K., Dudin P., Chulkov E.V., Laubschat C., Geibel C., Krellner C., Vyalikh D.V. Strong spin-orbit coupling in the noncentrosymmetric Kondo lattice. Phys. Rev. B, Sep 2018, 98, P. 115157.

10. Vyazovskaya A.Y., Kuznetsov V.M. Spin-orbit interaction effect on surface electronic structure of GdX2Si2 compound. Russian Physics Journal, 2021, 64, P. 1451–1459.

11. Shigeoka T., Kurata Y., Nakata T., Fujiwara T., Matsubayashi K., Uwatoko Y. Crystal field effects in polymorphic compound TbIr2Si2. Physics Procedia, 2015, 75, P. 837–844. 20th International Conference on Magnetism, ICM 2015.

12. Blochl P.E. Projector augmented-wave method. ¨ Phys. Rev. B, Dec 1994, 50, P. 17953–17979.

13. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, Jan 1999, 59, P. 1758–1775.

14. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. ¨ Phys. Rev. B, Oct 1996, 54, P. 11169–11186.

15. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., Oct 1996, 77, P. 3865–3868.

16. Krukau A.V., Vydrov O.A., Izmaylov A.F., Scuseria G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of chemical physics, 2006, 125(22), P. 224106.

17. Anisimov V.I., Zaanen J., Andersen O.K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B, Jul 1991, 44, P. 943–954.

18. Ferreira L.G., Marques M., Teles L.K. Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys. Rev. B, Sep 2008, 78, P. 125116.

19. Ferreira L.G., Marques M., and Teles L.K. Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors. AIP Advances, Sep 2011, 1, P. 032119.

20. Kliemt K., Peters M., Feldmann F., Kraiker A., Tran D.-M., Rongstock S., Hellwig J., Witt S., Bolte M., Krellner C. Crystal growth of materials with the ThCr2Si2 structure type. Cryst. Res. Technol., 2020, 55(2), P. 1900116.

21. Momma K., Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, Dec 2011, 44, P. 1272–1276.


Review

For citations:


Perminova D.A., Shvets I.A., Usachov D.Yu., Vyalykh D.V., Eremeev S.V. Surface electronic structure of TbIr2Si2 antiferromagnet. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):467-471. https://doi.org/10.17586/2220-8054-2025-16-4-467-471

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)