Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phase formation in the BiPO4–YPO4–(H2O) system

https://doi.org/10.17586/2220-8054-2025-16-4-472-482

Abstract

This work is devoted to the study of phase equilibria in the BiPO4–YPO4–(nH2O) system under mild conditions. It was shown that using the precipitation method leads to crystallization of the samples into the rhabdophane phase YPO4 · nH2O and the ximengite phase BiPO4. Hydrothermal treatment of the samples at 160C results in the gradual transformation of hexagonal yttrium phosphate with a rhabdophane-type structure into tetragonal xenotime YPO4, and hexagonal bismuth phosphate with a ximengite-type structure into monoclinic bismuth phosphate (space group P 21/n). The transformation into the stable phases of xenotime and monoclinic bismuth phosphate is almost complete after 28 days of isothermal holding under hydrothermal conditions at 160C. Moreover, the lower the content of the second component in samples containing both Bi and Y, the faster the structural transformation into the stable phase proceeds. A solid solution based on monoclinic bismuth phosphate with the composition Bi0.94Y0.06PO4 is formed in the system. Before disappearing, the rhabdophane-type phase represents a solid solution with the composition Y0.8Bi0.2PO4 · nH2O. The crystallite sizes of all phases increase with an increase in the bismuth content in the system.

About the Authors

A. A. Osminina
Branch of Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry; Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Alena A. Osminina 

St. Petersburg



D. P. Elovikov
Branch of Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry; St. Petersburg Electrotechnical University “LETI”
Russian Federation

Dmitry P. Elovikov

St. Petersburg



O. V. Proskurina
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Olga V. Proskurina 

St. Petersburg



References

1. Sankar S., RajA.N., Jyothi C.K., Warrier K.G.K., Padmanabhan P.V.A. Room temperature synthesis of high temperature stable lanthanum phosphate-yttria nanocomposite. Materials Research Bulletin, 2012, 47 (7), P. 1835–1837.

2. Du Foude Kerdaniel E., Clavier N., Dacheux N., Terra O., Podor R.Actinide solubility-controlling phases during the dissolution of phosphate ceramics. J. Nucl. Mater., 2007, 362 (2–3), P. 451–458.

3. Sroor F.M.A., Edelmannand F.T. The Rare Earth Elements: Fundamentals and Applications. Ed. Atwood D.A. Chichester: John Wiley & Sons Ltd, 2012, P. 313–320.

4. Hikichi Y., Nomura T. Melting Temperatures of Monazite and Xenotime. J. Am. Ceram. Soc., 1987, 70 (10), P. 252.

5. Horvath I., Bondar I.A., Mezentseva L.P. Thermochemistry of Hydrated Rare Earth Orthophosphates. ´ J. Therm. Anal., 1988, 33 (3), P. 755–760.

6. Gysi A.P., Williams-Jones A.E., Harlov D. The Solubility of Xenotime-(Y) and Other HREE Phosphates (DyPO4, ErPO4 and YbPO4) in Aqueous Solutions from 100 to 250 ◦C and Psat. Chem. Geol., 2015, 401, P. 83–95.

7. Schlenz H., Heuser J.,Neumann A., Schmitz S., Bosbach D. Monazite as a Suitable Actinide Waste Form. Zeitschrift fur Krist., 2013, 228 (3), P. 113–123.

8. Huittinen N., Arinicheva Y.,Kowalski P.M., Vinograd V.L.,Neumeier S., Bosbach D. Probing Structural Homogeneity of La1-xGdxPO4 MonaziteType Solid Solutions by Combined Spectroscopic and Computational Studies. J. Nucl. Mater., 2017, 486, P. 148–157.

9. Enikeeva M.O., Proskurina O.V., Danilovich D.P., Gusarov V.V. Formation of Nanocrystals Based on Equimolar Mixture of Lanthanum and Yttrium Orthophosphates under Microvawe-Assisted Hydrothermal Synthesis. Nanosyst.: Phys. Chem. Math., 2020, 11 (6), P. 705–715.

10. Maslennikova T.P., Osipov A.V., Mezentseva L.P., Drozdova I.A., Kuchaeva S.K., Ugolkov V.L., Gusarov V.V. Synthesis, Mutual Solubility, and Thermal Behavior of Nanocrystals in the LaPO4-YPO4-H2O System. Glas. Phys. Chem., 2010, 36 (3), P. 351–357.

11. Enikeeva M.O., Proskurina O.V., Levin A.A., Smirnov A.V., Nevedomskiy V.N., Gusarov V.V. Structure of Y0.75La0.25PO4 · 0.67H2O Rhabdophane Nanoparticles Synthesized by the Hydrothermal Microwave Method. J. Solid State Chem., 2023, 319, 123829.

12. Enikeeva M.O., Proskurina O.V., Motaylo E.S., Danilovich D.P.,Gusarov V.V. The Influence of Condition of the Monazite Structured La0.9Y0.1PO4 Nanocrystals Sintering on Thermal and Mechanical Properties of the Material. Nanosyst: Phys. Chem. Math., 2021, 12 (6), P. 799–807.

13. Jinxiu W., Mei L., Huiling J.,Zhaogang L., Hengjun J.,Zhongzhi W. Morphology formation mechanism and fluorescence properties of nanophosphor YPO4:Sm3+ excited by near-ultraviolet light. J. Alloys Compd., 2019, 821, 153535.

14. Khan S.A., Jalil A., Khan Q.U., Irfan R.M., Mehmood I.,Khan K., Kiani M., Dong B., Khan N., Yu J.L., Zhu L., Agathopoulos S. New physical insight into crystal structure, luminescence and optical properties of YPO4:Dy3+Eu3+Tb3+ single-phase white-light-emitting phosphors. J. Alloys Compd., 2020, 817. 152687.

15. Boatner L.A. Synthesis, structure, and properties of monazite, pretulite, and xenotime. Phosphates: Geochemical, Geobiological and Materials Importance, 2019, 48, P. 87–122.

16. Mesbah A., Clavier N., Elkaim E., Gausse C., Ben Kacem I., Szenknect S., Dacheux N. Monoclinic Form of the Rhabdophane Compounds: REEPO4 · 0.667H2O. Cryst. Growth Des., 2014, 14, P. 5090–5098.

17. Mesbah A., Clavier N., Elkaim E., Szenknect S., Dacheux N. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO4 · 0.667H2O to the hexagonal LnPO4 (Ln = Nd, Sm, Gd, Eu and Dy). J. Solid State Chem., 2017, 249, P. 221–227.

18. Duran E.C., Rafiuddin M.R., Shen Y., Hunt S.A., Mir A.H., Eggeman A.S. 3D electron diffraction studies of synthetic rhabdophane (DyPO4 ·nH2O). Structural Chemistry, 2024, 80 (10), P. 612–619.

19. Osipov A.V., Mezentseva L.P., Drozdova I.A., Kuchaeva S.K., Ugolkov V.L., Gusarov V.V. Preparation and thermal transformations of nanocrystals in the LaPO4–LuPO4–H2O system. Glass Physics and Chemistry, 2009, 35 (4), P. 431–435.

20. Gavrichev K.S., Ryumin M.A., Tyurin A.V., Khoroshilov A.V., Mezentseva L.P., Osipov A.V., Ugolkov V.L., Gusarov V.V. Thermal behavior of LaPO4 · nH2O and NdPO4 · nH2O nanopowders. J. of Thermal Analysis and Calorimetry, 2010, 102, P. 809–811.

21. Luwang N., Ningthoujam R.S., Srivastava S.K., Vatsa R.K. Disappearance and Recovery of Luminescence in Bi3+, Eu3+ Codoped YPO4 Nanoparticles Due to the Presence of Water Molecules Up to 800 ◦C. JACS, 2011, 133, P. 2998–3004.

22. Awater R., Niemeijer-Berghuijsand L.C., Dorenbos P. Luminescence and charge carrier trapping in YPO4:Bi. Opt. Mater., 2017, 66, P. 351–355.

23. Yahiaoui Z., Hassairi M.A., Dammak M. Synthesis and Optical Spectroscopy of YPO4:Eu3+ Orange-Red Phosphors. J. Electron. Mater., 2017, 46, P. 4765–4773.

24. Chandrasekhar V., Metre R.K., Narayanan R.S. Lipophilic bismuth phosphates: A molecular tetradecanuclear cage and a 1D-coordination polymer. Synthesis, structure and conversion to BiPO4. Dalton Transactions, 2013, 42 (24), P. 8709–8716.

25. Zhao M., Li G., Zheng J., Li L., Wang H., Yang L. Preparation and polymorph-sensitive luminescence properties of BiPO4:Eu, Part I: Roomtemperature reaction followed by a heat treatment. Cryst. Eng. Comm., 2011, 13, P. 6251–6257.

26. Wang R., Fan H., Ji Q., Imran M., Mujahid A., Wang J., Wang J., Zhang Y. Dressing Stark splitting of time-resolved excitation spectra in Eu3+-doped BiPO4 micro-crystals. Optics and Laser Technology, 2024, 176, 110996

27. Chang T.S., Guijia L., Shin C.H., Lee Y.K., Yun S.S. Catalytic behavior of BiPO4 in the multicomponent bismuth phosphate system on the propylene ammoxidation. Catal. Lett., 2000, 68, P. 229–234.

28. Ruwet M., Ceckiewicz S., Delmon B. Pure and Mo-Doped BiPO4, Promoted by O2, As a New Catalyst for Butyraldehyde Production. Ind. Eng. Chem. Res., 1987, 26, P. 1981–1983.

29. Iitaka K., Tani Y., Umezawa Y.Orthophosphate ion-sensors based on a quartz-crystal microbalance coated with insoluble orthophosphate salts. Anal. Chim. Acta, 1997, 338, P. 77–87.

30. Kalaiselvan S., Jeevanram R.K.A fast and simple method for the estimation of natural uranium in urine. J. Radioanal. Nucl. Chem., 1999, 240, P. 277–279.

31. Holgye Z. Separation of neptunium from urine by coprecipitation with BiPO ¨ 4. J. Radioanal. Nucl. Chem., 1998, 227, P. 127–128.

32. Cheng L.W., Tsai J.C., Huang T.Y., Huang C. W., Unnikrishnan B., Lin Y.W. Controlled synthesis, characterization and photocatalytic activity of BiPO4 nanostructures with different morphologies. Materials Research Express, 2014, 1 (2), 025023.

33. Jermoumi T., Hafid M., Et-Tabirou M. Electrical conductivity study on Na3PO4-Pb3(PO4)2-BiPO4 phosphate glasses. Mater. Sci. Eng. B, 2001, 85, P. 28–33.

34. Elmoudane M., Et-Tabirou M., Hafid M. Glass-forming region in the system Li3PO4-Pb3(PO4)2-BiPO4(Li2O-PbO-Bi2O3-P2O5) and its ionic conductivity. Mater. Res. Bull., 2000, 35, P. 279–287.

35. Zhao M., Li L., Zheng J., Yang L., Li G. Is BiPO4 a better luminescent host? Case study on doping and annealing. Inorg. Chem., 2013, 52, P. 807–815.

36. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russ. J. Gen. Chem., 1997,67 (12), P. 1846–1851.

37. Almjasheva O.V. The role of non-autonomous phases in the formation and transformation of solid-phase oxide systems. Nanosystems: Phys. Chem. Math., 2024, 15 (6), P. 755–767.

38. Alexandrov A.A., Bragina A.G., Sorokin N.I., Voronov V.V., Luginina A.A., Kuznetsov S.V., Ivanov V.K., Fedorov P.P. Low-temperature phase formation in the BaF2-LaF3 system. Inorganic Materials, 2023, 59 (3), P. 295–305.

39. Popkov V.I., Almjasheva O.V., Semenova A.S., Kellerman D., Nevedomskiy V., Gusarov V. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. Mater. Sci.: Materials in Electronics, 2017, 28 (10), P. 7163–7170.

40. Livage J. Quandl’air et l’eauremplacent le petrole. ´ Le Monde, 1977, 26 Octobre.

41. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Phys. Chem. Math., 2014, 5 (3), P. 405–417

42. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosystems: Phys. Chem. Math., 2016, 7 (6), P. 1031–1049.

43. Almjasheva O.V., Denisova T.A. Water state in nanocrystals of zirconium dioxide prepared under hydrothermal conditions and its influence on structural transformations. Russ. J. General Chemistry, 2017, 87 (1), P. 1–7.

44. Yan S.Q., Long C.G. Effects of Sm3+ concentration on the microstructure and luminescence properties of BiPO4 phosphor prepared by hydrothermal method. J. Mater. Sci.-Mater. Electron., 2016, 27, P. 12079–12084.

45. Xue F., Li H., Zhu Y., Xiong S., Zhang X., Tingting W., Liand X., Qian Y. Solvothermal synthesis and photoluminescence properties of BiPO4

46. nano-cocoons and nanorods with different phases. J. Solid State Chem, 2009, 182, P. 1396–1400.

47. Proskurina O.V., Sivtsov E.V., Enikeeva M.O., Sirotkin A.A., AbievR.Sh., Gusarov V.V. Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosyst.: Phys. Chem. Math., 2019, 10 (2), P. 206–214.

48. Elovikov D.P., Osminina A.A. The role of the reaction medium pH in the formation of nanocrystalline phases in the Bi2O3–P2O5–H2O system. Nanosyst.: Phys. Chem. Math., 2024, 15 (3), P. 361–368.

49. Enikeeva M.O., Kenges K.M., Proskurina O.V., Danilovich D.P., Gusarov V.V. Influence of Hydrothermal Treatment Conditions on the Formation of Lanthanum Orthophosphate Nanoparticles of Monazite Structure. Russ. J. Appl. Chem., 2020, 93, P. 540–548.

50. Enikeeva M.O., Yakovleva A.A., Proskurina O.V., Nevedomskiy V.N., Gusarov V.V. Phase formation under hydrothermal conditions and thermal transformations in the GdPO4–YPO4–H2O system. Inorg. Chem. Commun., 2024, 159, 111777.


Supplementary files

1. Supplementary Materials
Subject
Type Исследовательские инструменты
Download (609KB)    
Indexing metadata ▾

Review

For citations:


Osminina A.A., Elovikov D.P., Proskurina O.V. Phase formation in the BiPO4–YPO4–(H2O) system. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):472-482. https://doi.org/10.17586/2220-8054-2025-16-4-472-482

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)