Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Электрохимические характеристики наночастиц оксида меди, синтезированных методом растворного горения с контролируемой морфологией

https://doi.org/10.17586/2220-8054-2025-16-4-483-490

Аннотация

Наночастицы оксида меди (CuO) были получены в условиях растворного горения с использованием глицина в качестве органического топлива и хелатирующего агента при различных окислительно-восстановительных отношениях (f = 0.2, 1.0 и 1.6). Полученные порошки были термически обработаны при 300 ℃ в течение 30 мин и охарактеризованы с помощью термогравиметрического дифференциального термического анализа (ДТА/ТГ), сканирующей электронной микроскопии (СЭМ), энергодисперсионной спектроскопии (ЭДС), порошковой рентгеновской дифракции (РФА) и атомно-абсорбционной спектрометрии (ААС). Электрохимические характеристики были определены с помощью циклической вольтамперометрии (ЦВА). Средние размеры кристаллитов и удельная поверхность полученных образцов варьировались в диапазоне от 4.8 до 18.6 нм и от 14.4 до 78.4 м2/г. Наибольшая удельная поверхность соответствует образцу, синтезированному при f = 0.2, который также имеет наименьший размер частиц (4.8 нм). Электрохимическое поведение нанопорошков оксида меди существенно зависит от структурных и морфологических особенностей. Отличная удельная емкость микроструктуры образца CuO, синтезированного при значительном дефиците топлива (f = 0.2), объясняется его большой площадью поверхности и большим радиусом пор.

Об авторах

К. Д. Мартинсон
Ioffe Institute
Россия


А. О. Лебедь
St. Petersburg Electrotechnical University “Leti”
Россия


Г. Э. Литосов
St. Petersburg State Institute of Technology
Россия


М. В. Канева
Ioffe Institute
Россия


А. А. Лобинский
Ioffe Institute
Россия


Список литературы

1. Guo T., Yao M.-S., Lin Y.-H., Nan C.-W., A comprehensive review on synthesis methods for transition-metal oxide nanostructures. Cryst. Eng. Comm., 2015, 19 (17), P. 3551–3585.

2. Sahoo S., Wickramathilaka K.Y., Njeri E., Silva D., Suib S.L. A review on transition metal oxides in catalysis. Frontiers in Chemistry, 2024, 12, 1374878.

3. Gaikwad P., Tiwari N., Kamat R., Mane S.M., Kulkarni S.B. A comprehensive review on the progress of transition metal oxides materials as a supercapacitor electrode. Materials Science and Engineering: B, 2024, 307, 117544.

4. Waris A., Din M., Ali A., Ali M., Afridi S., Baset A., Khan A.U. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorganic Chemistry Communications, 2021, 123, 108369.

5. Baranov O., Bazaka K., Belmonte T., Riccardi C., Roman H.E., Mohandas M., Xu S., Cvelbar U., Levchenko I. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis. Nanoscale Horizons, 2023, 8, P. 568–602.

6. Paul M.J., Suresh R., Akila T., Balasubramani V., Muthusamy S., Alarifi S., Ayub R. Standardizing the optimal photo-diode performance of CuO nanostructures through various morphological patterns. J. of Alloys and Compounds, 2024, 1000, 175092.

7. Poreddy R., Engelbrekt C., Riisager A. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catalysis Science & Technology, 2015, 4 (5), P. 2467–2477.

8. Asamoah R.B., Annan E., Mensah B., Nbelayim P., Apalangya V., Onwona-Agyeman B., Yaya A. A Comparative Study of Antibacterial Activity of CuO/Ag and ZnO/Ag Nanocomposites. Advances in Materials Science and Engineering, 2020, 2020, 7814323.

9. Wang P., Gou X.-X., Xin S., Cao F.-F. Facile synthesis of CuO nanochains as high-rate anode materials for lithium-ion batteries. New Journal of Chemistry, 2019, 17 (43), P. 6535–6539.

10. Doring G., Sternemann C., Kaprolat A., Mattila A., Hamalainen K., Schulke W. Shake-up valence excitations in by resonant inelastic x-ray scattering. Physical Review B, 2004, 70, 085115.

11. Dhineshbabu N.R., Rajendran V., Nithyavathy N., Vetumperumal R. Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience, 2016, 6, P. 933–939.

12. Gund G.S., Dubal D.P., Dhawale D.S., Shinde S.S., Lokhande C.D. Porous CuO nanosheet clusters prepared by a surfactant assisted hydrothermal method for high performance supercapacitors. RSC Advances, 2013, 46 (3), P. 24099–24107.

13. Vidhyadharan B., Misnon I.I., Aziz R.A., Padmasree K.P., Yusoff M.M., Jose R. Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. of Materials Chemistry A, 2014, 18 (2), P. 6578–6588.

14. Li J., Mayer J.W. Oxidation and reduction of copper oxide thin films. Materials Chemistry and Physics, 1992, 32, P. 1–24.

15. Kim D.-S., Lee G.-H., Lee S., Kim J.-C., Lee H.J., Kim B.-K., Kim D.-W. Electrocatalytic performance of CuO/graphene nanocomposites for Li-O2 batteries. J. of Alloys and Compounds, 2017, 707, P. 275–280.

16. Sonia S., Poongodi S., Kumar P.S., Mangalaraj D., Ponpandian N. Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Materials Science in Semiconductor Processing, 2015, 30, P. 585–591.

17. Christy A.J., Nehru L.C., Umadevi M. A novel combustion method to prepare CuO nanorods and its antimicrobial and photocatalytic activities. Powder Technology, 2013, 235, P. 783–786.

18. Mousali E., Zanjanchi M.A. Electrochemical synthesis of copper(II) oxide nanorods and their application in photocatalytic reactions. J. of Solid State Electrochemistry, 2019, 23, P. 925–935.

19. Saleem M.H., Ejaz U., Vithanage M., Bolan N., Soddique K.H.M. Synthesis, characterization, and advanced sustainable applications of copper oxide nanoparticles: a review. Clean Technologies and Environmental Policy, 2024, 6, 02774.

20. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution combustion synthesis of nanoscale materials. Chemical Reviews, 2016, 116 (23), P. 14493–14586.

21. Martinson K.D., Kondrashkova I.S., Chebanenko M.I., Kiselev A.S., Kiseleva T.Yu., Popkov V.I. Morphology, structure and magnetic behavior of orthorhombic and hexagonal HoFeO3 synthesized via solution combustion approach. J. of Rare Earth, 2022, 40 (2), P. 296–301.

22. Patil S.P., Patil S.P., Puri V.R., Jadhav L.D. Synthesis and characterization of pure Cu and CuO nano particles by solution combustion synthesis. AIP Conference Proceedings, 2013, 1536 (1), P. 1260–1261.

23. Cheng H.H., Chen S.-S., Liu H.-M., Jang H.-M., Chang S.-Y. Glycine–Nitrate Combustion Synthesis of Cu-Based Nanoparticles for NP9EO Degradation Applications. Catalysts, 2020, 10 (9), 1061.

24. Dyachenko S.V., Martinson K.D., Cherepkova I.A., Zhernovoi A.I. Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type, produced by glycine-nitrate combustion. Russian J. of Applied Chemistry, 2016, 89, P. 535–539.

25. Murthy H.C.A., Zeleka T.D., Tan K.B., Ghotekar S., Alam M.W., Balachandran R., Chan K.-Y., Sanaulla P.F., Kumar M.R.A., Ravikumar C.R. Enhanced multifunctionality of CuO nanoparticles synthesized using aqueous leaf extract of Vernonia amygdalina plant. Results in Chemistry, 2021, 3, 100141.

26. Tamaekong N., Liewhiran C., Phanichphant S. Synthesis of Thermally Spherical CuO Nanoparticles. J. of Nanomaterials, 2014, 2014, 507978.

27. Sadabadi H., Aftabtalab A., Zafarian S., Chakra S., Venkateswara R., Shaker S. Influence of Fuel and Condition in Combustion Synthesis on Properties of Copper (II) Oxide Nanoparticle. Advanced Materials Research, 2013, 829, P. 152–156.

28. Su D., Xie X., Dou S., Wang G. CuO single crystal with exposed 001 facets – A highly efficient material for gas sensing and Li-ion battery applications. Scientific Reports, 2014, 4, 5753.

29. Martinson K.D., Murashkin A.A., Lobinsky A.A., Maltsev D.D., Qi K., Yu J., Almjasheva O.V., Popkov V.I. Structural, magnetic and electrochemical studies on ZnxMg1-xFe2O4 nanoparticles prepared via solution combustion method. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (2), P. 233–239.

30. Kang M., Gewirth A.A. Voltammetric and Force Spectroscopic Examination of Oxide Formation on Cu(111) in Basic Solution. The J. of Physical Chemistry B, 2002, 106 (47), P. 12211–12220.


Рецензия

Для цитирования:


Мартинсон К.Д., Лебедь А.О., Литосов Г.Э., Канева М.В., Лобинский А.А. Электрохимические характеристики наночастиц оксида меди, синтезированных методом растворного горения с контролируемой морфологией. Наносистемы: физика, химия, математика. 2025;16(4):483-490. https://doi.org/10.17586/2220-8054-2025-16-4-483-490

For citation:


Martinson K.D., Lebed A.O., Litosov H.E., Kaneva M.V., Lobinsky A.A. Electrochemical characteristics of copper oxide nanoparticles synthesized by solution combustion method with controlled morphology. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):483-490. https://doi.org/10.17586/2220-8054-2025-16-4-483-490

Просмотров: 43


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)