Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A surface modification strategy for synthesizing highly water-stable CsPbBr3 perovskite quantum dots

https://doi.org/10.17586/2220-8054-2025-16-4-521-527

Abstract

Hydrophobic CsPbBr3 perovskite quantum dots (PQDs) were synthesized via a ligand-assisted re-precipitation method with various antisolvents. A study was conducted to assess antisolvents influence on the properties of the synthesized PQDs. To enhance the stability of PQDs in polar media and possess surface functional groups for further conjugation with biomolecules, the surface of the nanoparticles was modified with 2 bromoisovaleric acid (Br-iVA), cetyl alcohol (CtA), and 3-aminopropyltriethoxysilane (APTES). PQDs modified with Br-iVA exhibited the highest stability in polar solvents and water, maintaining for up to 90 days.

About the Authors

S. A. Novikova
Dubna State University
Russian Federation

Sagila A. Novikova

Dubna, Moscow oblast, 141980, Russia



E. D. Gribova
Dubna State University
Russian Federation

Elena D. Gribova

Dubna, Moscow oblast, 141980, Russia



K. S. Kasimtseva
Dubna State University
Russian Federation

Ksenia S. Kasimtseva 

Dubna, Moscow oblast, 141980, Russia



E. A. Sidorov
Dubna State University
Russian Federation

Evgeniy A. Sidorov

Dubna, Moscow oblast, 141980, Russia



I. N. Fadeikina
Joint Institute for Nuclear Research
Russian Federation

Dubna, Moscow oblast, 141980 Russia



A. N. Nechaev
Joint Institute for Nuclear Research
Russian Federation

Dubna, Moscow oblast, 141980 Russia



References

1. Talianov P.M., Peltek O.O., Masharin M., Khubezhov S., Baranov M.A., Drabavicius A., Timin A.S., Zelenkov L.E., Pushkarev A. P., Makarov S.V., Zyuzin M.V. Halide perovskite nanocrystals with enhanced water stability for upconversion imaging in a living cell. The Journal of Physical Chemistry Letters, 2021, 12(37), P. 8991–8998.

2. Zhao Y., Zhang Q., Meng Q., Wu F., Zhang L., Tang Y., Guan Y. An L. Quantum dots-based lateral flow immunoassay combined with image analysis for semiquantitative detection of IgE antibody to mite. International Journal of Nanomedicine, 2017, P. 4805–4812.

3. Matea C.T., Mocan T., Tabaran F., Pop T., Mosteanu O., Puia C., Iancu C., Mocan L. Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine, 2017, P. 5421–5431.

4. Wang Y.K., Yuan F., Dong Y., Li J.Y., Johnston A., Chen B., Saidaminov M.I., Zhou C., Zheng X., Hou Y., Bertens K., Ebe H., Ma D., Deng Z., Yuan S., Chen R., Sagar L. K., Liu J., Fan J., Li P., Li X., Gao Y., Fung M., Lu Z., Bakr O.M., Liao L., Sargent E.H. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angewandte Chemie International Edition, 2021, 60(29), P. 16164–16170.

5. Koryakina I., Kuznetsova D.S., Zuev D.A., Milichko V.A., Timin A.S., Zyuzin M.V. Optically responsive delivery platforms: From the design considerations to biomedical applications. Nanophotonics, 2020, 9(1), P. 39–74.

6. Lian H., Li Y., Saravanakumar S., Jiang H., Li Z., Wang J., Xu L., Zhao W., Han G. Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordination Chemistry Reviews, 2022, 452, P. 214313.

7. Seo H.K., Kim H., Lee J., Park M.H., Jeong S.H., Kim Y.H., Kwon S., Han T., Yoo S., Lee T.W. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Advanced Materials, 2017, 29(12), P. 1605587.

8. Wang F., Wang H., Ali A., Zhang Y., Cui X., Liu Y. In-situ one-step electrospray fabrication of polyvinylidene fluoride encapsulated CsPbBr3 spheres with high stability and cell imaging application. Inorganic Chemistry Communications, 2019, 106, P. 99–103.

9. Jiang G., Erdem O., Hubner R., Georgi M., Wei W., Fan X., Wang J., Demir H.V., Gaponik N. Mechanosynthesis of polymer-stabilized lead ¨ bromide perovskites: Insight into the formation and phase conversion of nanoparticles. Nano Research, 2021, 14, P. 1078–1086.

10. De Albuquerque C.D.L., Schultz Z.D. Super-resolution surface-enhanced Raman scattering imaging of single particles in cells. Analytical Chemistry, 2020, 92(13), P. 9389–9398.

11. Min Q., Lei J., Guo X., Wang T., Yang Q., Zhou D., Yu X., Yu S. F., Qiu J., Zhan Q., Xu X. Atomic-level passivation of individual upconversion nanocrystal for single particle microscopic imaging. Advanced Functional Materials, 2020, 30(6), P. 1906137.

12. Oh H., Park Y., Song H. Tracking underpotential deposition of copper on individual silver nanocubes by real-time single-particle plasmon scattering imaging. The Journal of Physical Chemistry C, 2020, 124(37), P. 20398–20409.

13. Zheng J., Chen J., Sun R., Zhang W., Huang Y., Shao J., Chi Y. A fluorescent immunochromatographic strip based on CsPbBr3/CsPb2Br5@ SiO2 facile encapsulation in pure water for the detection of human chorionic gonadotropin (HCG) antigen. Sensors and Actuators B: Chemical, 2024, 410, P. 135608.

14. Hsieh Y.T., Lin Y.F., Liu W.R. Enhancing the water resistance and stability of CsPbBr3 perovskite quantum dots for light-emitting-diode applications through encapsulation in waterproof polymethylsilsesquioxane aerogels. ACS Applied Materials & Interfaces, 2020, 12(52), P. 58049–58059.

15. Loiudice A., Saris S., Oveisi E., Alexander D.T., Buonsanti R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angewandte Chemie International Edition, 2017, 56(36), P. 10696–10701.

16. Bi C., Wang S., Li Q., Kershaw S. V., Tian J., Rogach A.L. Thermally stable copper (II)-doped cesium lead halide perovskite quantum dots with strong blue emission. The Journal of Physical Chemistry Letters, 2019, 10(5), P. 943–952.

17. Li S., Shi Z., Zhang F., Wang L., Ma Z., Yang D., Yao Z., Wu D., Xu T., Y. Tian, Zhang Y., Shan C., Li X. J. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chemistry of Materials, 2019, 31(11), P. 3917–3928.

18. Yao J.S., Ge J., Han B.N., Wang K.H., Yao H.B., Yu H.L., Li J.H., Zhu B.S., Song J., Chen C., Zhang Q., Zeng H., Luo Y., Yu S.H. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. Journal of the American Chemical Society, 2018, 140(10), P. 3626–3634.

19. Reiss P., Protiere M., Li L. Core/shell semiconductor nanocrystals. Small, 2009, 5(2), P. 154–168.

20. Ghosh Chaudhuri R., Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012, 112(4), P. 2373–2433.

21. Liu Z., Zhang Y., Fan Y., Chen Z., Tang Z., Zhao J., Lv Y., Lin J., Guo X., Zhang J., Liu X. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Applied Materials & Interfaces, 2018, 10(15), P. 13053–13061.

22. Li Q., Xu K., Fan S., Zhang H., Wei X., Xu C., Luan X., Wang Z. X., Peng H., Shi L. Two Birds with One Stone: Aqueous Phase Synthesis of All-Inorganic Halide Perovskite CsPbClxBr3-x Nanocrystals Using Cstfa as Cesium Source and Surface Ligand. Available at SSRN 4653908.

23. Li, X., Wu, Y., Zhang, S., Cai, B., Gu, Y., Song, J., & Zeng, H. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15), P. 2435–2445.

24. Zhang J., Fan L., Li J., Liu X., Wang R., Wang L., & Tu G. Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system. Nano Research, 2019, 12, P. 121–127.

25. Woznica M., Sobiech M., Luli ´ nski P. A fusion of molecular imprinting technology and siloxane chemistry: A way to advanced hybrid nanomate- ´ rials. Nanomaterials, 2023, 13(2), P. 248.

26. Han S. et al. Stabilized perovskite quantum dot solids via nonpolar solvent dispersible covalent ligands. Advanced Science, 2023, 10(23), P. 2301793.

27. Lao Y., Yang S., Yu W., Guo H., Zou Y., Chen Z., & Xiao L. Multifunctional π-Conjugated Additives for Halide Perovskite. Advanced Science, 2022, 9(17), P. 2105307.


Review

For citations:


Novikova S.A., Gribova E.D., Kasimtseva K.S., Sidorov E.A., Fadeikina I.N., Nechaev A.N. A surface modification strategy for synthesizing highly water-stable CsPbBr3 perovskite quantum dots. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):521-527. https://doi.org/10.17586/2220-8054-2025-16-4-521-527

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)