Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effects of mechanically activated clinoptilolite zeolite on growth of perennial leguminous grasses

https://doi.org/10.17586/2220-8054-2025-16-4-537-548

Abstract

The results of research on the influence of clinoptilolite zeolite, phosphorus-zeolite, and zeoliteorganic fertilizers on seed germination and growth of perennial legume grasses by laboratory phytotesting in grey forest soil are presented. It was found that as a result of filling the interpolymer complex with clinoptilolite zeolite, hydrogen bonds are formed between carbonyl groups of polyacrylamide and silanol groups of the mineral. The important role of the size factor in the influence of fertilizer on plant growth has been established. It is shown that mechanically activated clinoptilolite-rich rock (mechanical energy dose 2.4 kJ·g-1) and the polyvinyl alcohol/polyacrylamide interpolymer complex resulting from mixing equivolume aqueous solutions with concentrations of 4 g·dL-1, filled with 0.4 wt % mechanically activated clinoptilolite-rich rock (mechanical energy dose 3.8 kJ·g-1), have a positive effect on germination and stem length of perennial legume grasses of meadow clover, eastern galega, and sand sainfoin in dark grey forest soil.

About the Authors

O. N. Dabizha
Transbaikal State University; Branch of the Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry
Russian Federation

Olga N. Dabizha 

Aleksandro-Zavodskaya, 30, Chita 672039, Russia

Makarova emb., 2, St. Petersburg 199034, Russia



T. P. Soloboeva
Transbaikal State University
Russian Federation

Tatyana P. Soloboeva

Aleksandro-Zavodskaya, 30, Chita 672039, Russia



A. G. Batukhtin
Transbaikal State University
Russian Federation

Andrey G. Batukhtin

Aleksandro-Zavodskaya, 30, Chita 672039, Russia



References

1. Tsintskaladze G., Eprikashvili L., Urushadze T., Kordzakhia T., Sharashenidze T., Zautashvili M., Burjanadze M. Nanomodified natural zeolite as a fertilizer of prolonged activity. Ann. Agrar. Sci., 2016, 14 (3), P. 163–168.

2. Nakhli S.A.A., Delkash M., Bakhshayesh B.E., Kazemian H. Application of zeolites for sustainable agriculture: a review on water and nutrient retention. Water Air Soil Pollut., 2017, 228, 464.

3. Cataldo E., Salvi L., Paoli F., Fucile M., Masciandaro G., Manzi D., Masini C.M., Mattii G.B. Application of zeolites in agriculture and other potential uses: a review. Agronomy, 2021, 11, 1547.

4. Szatanik-Kloc A., Szerement J., Adamczuk A., Jozefaciuk G. Effect of low zeolite doses on plants and soil physicochemical properties. ´ Materials (Basel), 2021, 14 (10), 2617.

5. Liu Y., Ma R., Tang R., Kong Y., Wang J., Li G., Yuan J. Effects of phosphate-containing additives and zeolite on maturity and heavy metal passivation during pig manure composting. Sci. Total Environ., 2022, 836 (10), 155727.

6. Vassilina T., Nasiyev B., Shibikeyeva A., Seitkali N., Kossanov S. The role of zeolite and mineral fertilizers in enhancing Table Beet (Beta vulgaris L.) productivity in dark chestnut soils of Southeast Kazakhstan. EJSS, 2024, 13 (4), P. 312–319.

7. Sha Y., Chi D., Chen T., Wang S., Zhao Q., Li Y., Sun Y., Chen J., Lærke P.E. Zeolite application increases grain yield and mitigates greenhouse gas emissions under alternate wetting and drying rice system. Sci. Total Environ., 2022, 838 (4), 156067.

8. de Carvalho I.J., Fungaro D.A., Cataldo E. Zeolites synthesized from agro?industrial residues applied in agriculture: a review and future prospects. Soil Use Manag., 2023, 40 (1), e13003.

9. Soltys L., Mironyuk I., Tatarchuk T., Tsinurchyn V. Zeolite-based composites as slow release fertilizers (Review). Phys. Chem. Solid State, 2020, 21, 1, P. 89–104.

10. Wu Q., Chen T., Chi D., Xia G., Sun Y., Song Y. Increasing nitrogen use efficiency with lower nitrogen application frequencies using zeolite in rice paddy fields. Int. Agrophys., 2019, 33, P. 263–269.

11. Mastinu A., Kumar A., Maccarinelli G., Bonini S.A., Premoli M., Aria F., Gianoncelli A., Memo M. Zeolite clinoptilolite: therapeutic virtues of an ancient mineral. Molecules, 2019, 24 (8), 1517.

12. Prisa D. Zeolites: a potential strategy for the solution of current environmental problems and a sustainable application for crop improvement and plant protection. GSC Adv. Res. Rev., 2023, 17 (01), P. 11–22.

13. Wea T.Yu., Unonis M.N.A., Khairuddin M.I., Shaharuddin Sh., Chai N.Ch. Mechanism in using commercial high efficient zeolite-base greenfeed slow release fertilizers. J. Agric. Chem. Environ., 2018, 7, P. 1–9.

14. Legese W., Taddesse A.M., Kibret K., Wogi L. Effects of natural and modified zeolite based composite fertilizers on slow release and nutrient use efficiency. Heliyon, 2024, 10 (3), e25524.

15. Yu S., Febrianti C., Kumala D., Yateman A. The effect of alginate-zeolite (3:1) Fe composite on physiological characters, stomatal density and yield of shallots (Allium cepa L. ’Bima Brebes’). Res. J. Biotech., 2022, 17 (9), P. 79–87.

16. Zhao Q., Chen T., Wang S., Sha Y., Zhang F., Sun Y., Chi D. Effects of five-year field aged zeolite on grain yield and reactive gaseous N losses in alternate wetting and drying paddy system. Sci. Total. Environ., 2023, 904, 166279.

17. Gonzalez J.A.F., Faria F.B., Nu ´ nez M.S. Fertcel – clinoptilolite natural product to optimize the fertilization and reduce environmental pollution. ˜ J. Agric. Sci. Technol. B, 2015, 5, P. 189–192.

18. de Campos Bernardi A.C., Polidoro J.C., de Melo Monte M.B., Pereira E.I., de Oliveira C.R., Ramesh K. Enhancing nutrient use efficiency using zeolites minerals – a review. Adv. Chem. Eng. Sci., 2016, 6 (4), P. 295–304.

19. Kulikova A.K., Yashin E.A., Zakharov N.G., Kozlov A.V., Toigildin A.L. Zeolite efficiency in the fertilization system of spring wheat. Res. J. Pharm. Bio. Chem. Sci., 2018, 9 (1), P. 144–148.

20. Cataldo E.C., Salvi L.S., Paoli F.P., Fucile M.F., Masciandaro G.M., Manzi D.M., Masini C.M., Mattii G.B. Effects of natural clinoptilolite on physiology, water stress, sugar, and anthocyanin content in Sanforte (Vitis vinifera L.) young vineyard. J. Agric. Sci., 2021, 159 (7–8), P. 488–499.

21. Jiang W., Li D., Yang J., Ye Y., Luo J., Zhou X., Yang L., Liu Z. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: passivation behavior and mechanism for Cd (II) in composting. Environ. Res., 2023, 231 (3), 116306.

22. Wang X.L., Liang C.H., Ma Z.H., Han Y. Effects of phosphate and zeolite on the transformation of Cd speciation in soil. Huan Jing Ke Xue, 2015, 36 (4), P. 1437–1444 [in Chinese].

23. Mihok F., Macko J., Orioak A., Ori ` oakov ` a R., Koval’ K., Sis ´ akov ´ a K., Petru ´ s O., Kosteck ˇ a Z. Controlled nitrogen release fertilizer based on zeolite ´ clinoptilolite: study of preparation process and release properties using molecular dynamics. Curr. Res. Gr. Sustain. Chem., 2020, 3, 100030.

24. Kalvachev Y., Vitale E., Arena C., Todorova T., Ilkov D., Velikova V. Ion-exchanged clinoptilolite as a substrate for space farming. Agriculture, 2024, 14 350.

25. Uzunova E.L., Mikosch H. Adsorption of phosphates and phosphoric acid in zeolite clinoptilolite: Electronic structure study. Microporous Mesoporous Mater., 2016, 232, P. 119–125.

26. Castro C.J., Shyu H.-Y., Hoque B., Yeh D.H. Evaluating the use of chemically modified clinoptilolite zeolite for the simultaneous recovery of ammonium and phosphate from blackwater. Environ. Sci. Water. Res. Technol. 2023, 9, 818.

27. Vassilina T., Nasiyev B., Rvaidarova G., Shibikeyeva A., Seitkali N., Salykova A., Vertayeva Zh. The effects of clinoptilolite type of zeolite and synthesised zeoliteenriched fertilizer on yield parameters of cucumber (Cucumis sativus) plant and some chemical properties in dark chestnut soil. EJSS, 2023, 12, P. 277–281.

28. Sahnoun R.D., Chaari K., Bouaziz J. Mechanochemical synthesis of kaolin-potassium phosphates complexes for application as slow-release fertilizer. Mediterr. J. Chem., 2015, 4 (3), P. 156–162.

29. Nur Aainaa H., Haruna Ahmed O., Ab Majid N.M., Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil. PLoS One, 2018, 13 (9), e0204401.

30. Sofia A.R.B., Jumadi O., Karim H. Pengaruh Pemberian Pupuk Urea dengan Polimer Poliakrilat, Zeolit dan Mimba (Azadirachta indica) Terhadap Pertumbuhan Tanaman Jagung. Journal Bionature, 2018, 19 (1), P. 35–46.

31. Chi S.L., Xu W.H., Xiong S.J., Wang W.Z., Qin Y.L., Zhao W.Y., Zhang Ch.L., Li Y.H., Li T., Zhang J.Zh., Xiong Zh.T., Wang Zh.Y., Xie D.T. [Effect of nano zeolites on pH, CEC in soil and Cd fractions in plant and soil at different cadmium levels]. Huan Jing Ke Xue. 2017, 38 (4), P. 1654–1666 [in Chinese].

32. Rainer D.N., Morris R.E. New avenues for mechanochemistry in zeolite science. Dalton Trans., 2021, 50 (26), P. 8995–9009.

33. Majano G., Borchardt L., Mitchell S., Valtchev V., Perez-Ram ´ ´ırez J. Rediscovering zeolite mechanochemistry – A pathway beyond current synthesis and modification boundaries. Microporous Mesoporous Mater., 2014, 194, P. 106–114.

34. Borges R., Wypych F., Petit E., Forano C., Prevot V. Potential sustainable slow-release fertilizers obtained by mechanochemical activation of MgAl and MgFe layered double hydroxides and K2HPO4. Nanomaterials, 2019, 9, 183.

35. AlShamaileh E., Al-Rawajfeh A.E., Alrbaihat M. Mechanochemical synthesis of slow-release fertilizers: a review. Open Agric. J., 2018, 12, P. 11–19.

36. Kic B., Grzmil B.U. Mechanochemical activation of phosphate rock in presence of zeolites. Przemysł Chemiczny, 2010, 89 (4), P. 414–418.

37. Konnova N.I., Compound phosphoric-zeolitic fertilizers – a new approach to improvement of offgrade phosphate rock efficiency. Gornyy informatsionno-analiticheskiy byulleten’, 2019, 5, P. 59–71 [In Russian].

38. Zhang Y., Yi Zh., Wei L., Kong L., Wang L. Modified iron phosphate/polyvinyl alcohol composite film for controlled-release fertilizers. RSC Adv., 2018, 8 (32), P. 18146–18152.

39. Bia³kowska A., Borycka B., Bakar M., Rzany A. Innovative NPK fertilizers based on polyacrylamide and polyvinyl alcohol with controlled release of nutrients. PJCT, 2022, 24 (2), P. 14–18.

40. Sun H., Lei T., Liu J., Guo X., Lv J. Physicochemical properties of water-based copolymer and zeolite composite sustained-release membrane materials. Materials (Basel), 2022, 15 (23), 8553.

41. Sri C.B., Shanmugasundaram R., Marimuthu S., Chitdeshwari T., Senthil A., Kalaiselvi T. Sugarcane bagasse and nano-zeolite based slow release Fe fertilizer hydrogel: its synthesis and characterization. Agricultural Science Digest, 2023, https://doi.org/10.18805/ag.D-5783.

42. Khodadadi Dehkordi D., The effects of superabsorbent polymers on soils and plants Pertanika. J. Trop. Agric. Sci., 2016, 39 (3), P. 267–298.

43. Orazzhanova L.K., Kassymova Zh.S., Mussabayeva B.Kh., Klivenko A.N. Soil structuring in the presence of the chitosan–polyacrylic acid interpolymer complex. Eurasian Soil. Sci., 2020, 53 (12), P. 1773–1781.

44. Altunina L.C., Swarovskaya L.I., Filatov D.A., Fufaeva M.S., Zhuk E.A., Bender O.G., Sigachev N.P., Konovalova N.A. Field experiments on the use of cryogels to protect soils from water and wind erosion. Problems of agrochemistry and ecology, 2013, 2, P. 47–52 [In Russian].

45. Titei V., Cosman S., Cosman V., Cozari S. The biochemical composition and the fodder value of Sand sainfoin, Onobrychis arenaria (KIT.) DC in Moldova. Scientific Papers. Series D. Animal Science, 2021, LXIV, 1, P. 210–215.

46. Dabizha O.N., Soloboeva T.P., Khamova T.V., Shilova O.A. Mechanoactivation of clinoptilolites with sodium and ammonium hydrophosphates to improve their electrophysical properties. Glass Phys Chem., 2023, 49 (3), P. 293–305.

47. Dabizha O.N. Polyvinyl alcohol/polyacrylamide/clinoptilolite nanocomposites. Proceeding of “XXIII All-Russian Conference with international participation on inorganic and organosilicate coatings”. St. Petersburg, 7–9 October 2019, LEMA Publishing House LLC, 2019, P. 41–43 [In Russian].

48. Tretinnikov O., Zagorskaya S. Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. J. Appl. Spectrosc., 2012, 79.

49. Koval M.G., Konohrai V.A., Feshchenko N.V., Romanenko N.G., Yakymenko I.K. Assessment of phytotoxicity of used zeolite as a sorbent of the dyeing and finishing production wastewater by the phytoindication method. Sci. Innov., 2023, 19 (6), P. 77–86.

50. Ovchinnikov A.S., Podkovyrov I.Y., Dolgova A.I. Influence of zeolites on the physiological processes in tissues of plant reproductive organs. RJOAS, 2017, 72, P. 344–348.

51. Permyakova N., Zheltonozhskaya T., Demchenko O., Momot L., Filipchenko S., Zagdanskaya N., Syromyatnikov V. Interactions, stabilizing the structure of intermolecular polycomplex betweenpoly(vinyl alcohol) and poly(acrylamide). Polish. J. Chem., 2002, 76 (9), P. 1347–1361.


Review

For citations:


Dabizha O.N., Soloboeva T.P., Batukhtin A.G. Effects of mechanically activated clinoptilolite zeolite on growth of perennial leguminous grasses. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(4):537-548. https://doi.org/10.17586/2220-8054-2025-16-4-537-548

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)