Моделирование квазибаллистического квантово-барьерного полевого транзистора на основе квантовой проволоки GaAs
https://doi.org/10.17586/2220-8054-2025-16-2-183-191
Аннотация
Выявлено новое конструктивное решение полевого транзистора (ПТ) с барьером Шоттки в проводящем канале. ПТ представляет собой квазибаллистический квантово-барьерный транзистор на основе цилиндрической нелегированной квантовой проволоки GaAs в матрице Al2O3, окруженной цилиндрическим металлическим затвором. Разработана методика определения оптимального изменения диаметра полупроводниковой квантовой проволоки вдоль ее оси. Определена оптимальная зависимость диаметра нанопроволоки от пространственной координаты вдоль ее оси, обеспечивающая возможность как устранения квантового барьера для электронов положительным напряжением затвора, так и минимизации электрического сопротивления канала транзистора в отличие от типичного ПТ с барьером Шоттки в проводящем канале. В рамках разработанной комбинированной физико-математической модели, описывающей транспорт электронов в канале транзистора, рассчитаны вольт-амперные характеристики транзистора на основе квантовой проволоки GaAs оптимального сечения. В данной модели учтены непараболичность зонной структуры полупроводника, квантово-размерные эффекты и такие вторичные квантовые эффекты, как столкновительное уширение и смещение уровней энергии электронов.
Об авторах
Д. В. ПоздняковБеларусь
А. В. Борздов
Беларусь
В. М. Борздов
Беларусь
Список литературы
1. Weste N.H.E., Money Harris D. CMOS VLSI Design: A circuits and systems perspective. Addison-Wesley, Boston, 2010, 659 p.
2. Cheng H., Yang Z., Zhang C., Xie C., Liu T., Wang J., Zhang Z. A new approach to modeling ultrashort channel ballistic nanowire GAA MOSFETs. Nanomaterials, 2022, 12(19), P. 3401-1–13.
3. Cheng H., Liu T., Zhang C., Liu Z., Yang Z., Nakazato K., Zhang Z. Nanowire gate-all-around MOSFETs modeling: ballistic transport incorporating the source-to-drain tunneling. Jpn. J. Appl. Phys., 2020, 59(7), P. 074002-1–20.
4. Burke A.M., Carrad D.J., Gluschke J.G., Storm K., Fahlvik Svensson S., Linke H., Samuelson L., Micolich A.P. InAs nanowire transistors with multiple, independent wrap-gate segments. Nano Lett., 2015, 15(5), P. 2836–2843.
5. Ullah A.R., Meyer F., Gluschke J.G., Naureen S., Caroff P., Krogstrup P., Nygard J., Micolich A.P. p-GaAs nanowire metal–semiconductor field-effect transistors with near-thermal limit gating. Nano Lett., 2018, 18(9), P. 5673–5680.
6. Peng L.-M. High-performance carbon nanotube thin-film transistor technology. ACS Nano, 2023, 17(22), P. 22156–22166.
7. Benjelloun M., Zaidan Z., Soltani A., Gogneau N., Morris D., Harmand J.-Ch. Design, simulation and optimization of an enhanced vertical GaN nanowire transistor on silicon substrate for power electronic applications. IEEE Access, 2023, 11, P. 40249–40257.
8. Xu L., Xu L., Li Q., Fang Sh., Li Y., Guo Y., Wang A., Quhe R., Yee Sin A., Lu J. Sub-5 nm gate-all-around InP nanowire transistors toward high-performance devices. ACS Appl. Electron. Mat., 2024, 6(1), P. 426–434.
9. Fuad M.H., Nayan Md.F., Raihan Md.A., Yeassin R., Mahmud R.R. Performance analysis of graphene field effect transistor at nanoscale regime. e-Prime – Adv. Electr. Eng., Electron. Energy, 2024, 9, P. 100679-1–7.
10. Rezgui H., Mukherjee Chhandak, Wang Y., Deng M., Kumar A., Muller J., Larrieu G., Maneux C. Nanoscale thermal transport in vertical gate- ¨ all-around junction-less nanowire transistors-part II: multiphysics simulation. IEEE Trans. Electron Devices, 2023, 70(12), P. 6505–6511.
11. Nazir G., Rehman A., Park S.-J. Energy-efficient tunneling field-effect transistors for low-power device applications: challenges and opportunities. ACS Appl. Mater. Interfaces, 2020, 12(42), P. 47127–47163.
12. Mah S.K., Ker P.J., Ahmad I., Zainul Abidin N.F., Ali Gamel M.M. A feasible alternative to FDSOI and FinFET: optimization of W/La2O3/Si planar PMOS with 14 nm gate-length. Materials, 2021, 14(19), P. 5721-1–15.
13. Zahoor F., Hanif M., Isyaku Bature U., Bodapati S., Chattopadhyay A., Azmadi Hussin F., Abbas H., Merchant F., Bashir F. Carbon nanotube field effect transistors: an overview of device structure, modeling, fabrication and applications. Phys. Scr., 2023, 98(8), P. 082003-1–34.
14. Cerdeira A., Estrada M., de Souza M., Pavanello M.A. Analytical model for the drain and gate currents in silicon nanowire and nanosheet MOS transistors valid between 300 and 500 K. Int. J. Numer. Model., 2024, 37(2), P. 3219-1–12.
15. Hashmi F., Nizamuddin M., Farshori M.A., Amin S.U., Khan Z.I. Graphene nanoribbon FET technology-based OTA for optimizing fast and energy-efficient electronics for IoT application: Next-generation circuit design. Micro & Nano Lett., 2024, 19(6), P. e70002-1–15.
16. Gupta S., Nandi A. Effect of air spacer in underlap GAA nanowire: an analogue/RF perspective. IET Circ. Dev. Syst., 2019, 13(8), P. 1196–1202.
17. Leonard F., Alec Talin A. Electrical contacts to one- and two-dimensional nanomaterials. Nature Nanotech., 2011, 6(12), P. 773–783.
18. Appenzeller J., Knoch J., Bjork M.T., Riel H., Schmid H., Riess W. Toward nanowire electronics. IEEE Trans. Electron Devices, 2008, 55(11), P. 2827–2845.
19. Memisevic E., Svensson J., Hellenbrand M., Lind E., Wernersson L.-E. Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mV/decade and Ion = 10 µA/µm for Ioff = 1 nA/µm at VDS = 0.3 V. IEEE Int. Electron Devices Meeting (IEDM, San Francisco), 2016, 19.1.1–4.
20. Carrillo Nunez H. Combining the modified local density approach with variational calculus: a flexible tandem for studying electron transport in nano-devices. PhD thesis, Antwerp, 2012, 127 pp.
21. Datta S. Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge, 1995, 377 pp.
22. Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Simulation of a vertical ballistic quantum-barrier field-effect transistor based on an undoped AlxGa1–xAs quantum nanowire. Rus. Microelectronics, 2023, 52(6), P. 483–492.
23. Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Calculation of electrophysical characteristics of semiconductor quantum wire device structures with one-dimensional electron gas. Rus. Microelectronics, 2023, 52(Suppl.1), P. S20–29.
24. Pozdnyakov D.V., Borzdov V.M. Modeling of electrophysical properties of device structures with one-dimensional electron gas. BSU, Minsk, 2025, 191 p. (in Russian).
25. Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Peculiarities of electron transport through the contact regions between semiconductor quantum wires with different cross sections. Nanobiotechnology Reports, 2024, 19(Suppl.1), P. S117–S123.
26. Neverov V.N., Titov A.N. Physics of low-dimensional systems. UrSU, Ekaterinburg, 2008, 240 p. (in Russian).
27. Radantsev V.F. Electronic properties of semiconductor nanostructures. UrSU, Ekaterinburg, 2008, 420 p. (in Russian).
28. Davydov A.S. Quantum mechanics. Pergamon Press, Oxford, 1976, 636 p.
29. Landau L.D., Lifshitz E.M. Quantum mechanics. Non-relativistic theory. Pergamon Press, Oxford, 1991, 677 p.
30. Shamala K.S., Murthy L.C.S., Narasimha R.K. Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method. Mat. Sci. Eng. B, 2004, 106(3), P. 269–274.
31. Levinshtein M., Rumyantsev S., Shur M. Handbook series on semiconductor parameters, Vol. 2: Ternary and quaternary III-V compounds. World Scientific Publishing Co. Pte. Ltd., Singapore, 1999, 205 p.
32. Baltenkov A.S., Msezane A.Z. Electronic quantum confinement in cylindrical potential well. Eur. Phys. J. D, 2016, 70(4), 81-1–9.
33. Gulyamov G., Gulyamov A.G., Davlatov A.B., Shahobiddinov B.B. Electron energy in rectangular and cylindrical quantum wires. Journal of Nano- and Electronic Physics, 2020, 12(4), 04023-1–5.
34. Harrison P., Valavanis A. Quantum wells, wires and dots. Theoretical and computational physics of semiconductor nanostructures. Wiley, Chichester – Hoboken, 2016, 598 p.
35. Pozdnyakov D. Influence of surface roughness scattering on electron low-field mobility in thin undoped GaAs-in-Al2O3 nanowires with rectangular cross-section. Phys. Status Solidi (b), 2010, 247(1), P. 134–139.
36. Lopez-Villanueva J.A., Melchor I., Cartujo P., Carceller J.E. Modified Schrodinger equation including nonparabolicity for the study of a twodimensional electron gas. Phys. Rev. B, 1993, 48(3), P. 1626–1631.
37. Borzdov V.M., Komarov F.F. Simulation of electrophysical properties of solid-state layered structures of integrated electronics. BSU, Minsk, 1999, 236 p. (in Russian).
38. Yamamoto H. Resonant tunneling condition and transmission coefficient in a symmetrical one-dimensional rectangular double-barrier system. Appl. Phys. A, 1987, 42, P. 245–248.
39. Borzdov A.V., Pozdnyakov D.V., Galenchik V.O., Borzdov V.M., Komarov F.F. Self-consistent calculations of phonon scattering rates in the GaAs transistor structure with one-dimensional electron gas. Phys. Status Solidi (b), 2005, 242(15), P. R134–R136.
40. Pozdnyakov D.V., Galenchik V.O., Borzdov A.V. Electron scattering in thin GaAs quantum wires. Phys. Low-Dim. Struct., 2006, 2, P. 87–90.
41. Borzdov A.V., Pozdnyakov D.V. Scattering of electrons in the GaAs/AlAs transistor structure. Phys. Solid State, 2007, 49(5), P. 963–967.
42. Pozdnyakov D., Galenchik V., Borzdov A., Borzdov V., Komarov F. Influence of scattering processes on electron quantum states in nanowires. Nanoscale Res. Lett., 2007, 2(4), P. 213–218.
43. Abramov I.I. Problems and principles of physics and simulation of micro- and nanoelectronics device structures. IV. Quantum-mechanical formalisms. Nano- and Microsystem Technology, 2007, 9(2), P. 24–32. (in Russian).
44. Thijssen J. Computational physics. Cambridge University Press, Cambridge, 2012, 620 p. [
45. Gubernatis J.E., Kawashima N., Werner P. Quantum Monte Carlo methods: Algorithms for lattice models. Cambridge University Press, Cambridge, 2016, 512 p.
Рецензия
Для цитирования:
Поздняков Д.В., Борздов А.В., Борздов В.М. Моделирование квазибаллистического квантово-барьерного полевого транзистора на основе квантовой проволоки GaAs. Наносистемы: физика, химия, математика. 2025;16(2):183-191. https://doi.org/10.17586/2220-8054-2025-16-2-183-191
For citation:
Pozdnyakov D.V., Borzdov A.V., Borzdov V.M. Simulation of a quasi-ballistic quantum-barrier field-effect transistor based on GaAs quantum wire. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):183-191. https://doi.org/10.17586/2220-8054-2025-16-2-183-191