Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nonlinear optimal control problem in a two-point boundary regime for a pseudoparabolic equation with Samarskii–Ionkin type conditions

https://doi.org/10.17586/2220-8054-2025-16-5-563-576

Abstract

This paper is devoted to study a optimal movable point control problem for a pseudoparabolic equation with nonlinear control function in a two-point nonlinear boundary condition. The equation is studied with Samarskii–Ionkin type boundary conditions on spatial variable x. Spectral problem is studied and eigenvalues, eigenfunctions and optimality conditions are found. Loaded nonlinear functional equations are obtained with respect to control function. We prove the existence and uniqueness of the control function by the method of compressing mapping. The state function is determined. Convergence of the Fourier series for the state function is proved.

About the Authors

T. K. Yuldashev
Tashkent State Transport University; Osh State University
Uzbekistan

Tursun K. Yuldashev

Temiryolchilar 1, Tashkent, 100174; Lenin Avenue, 331, Osh 723500



B. J. Kadirkulov
Alfraganus University
Uzbekistan

Bakhtiyar J. Kadirkulov

Tashkent



A. T. Ramazanova
Universitat Duisburg-Essen
Germany

Aysel T. Ramazanova

Essen



Zh. Zh. Shermamatov
Osh State University
Kyrgyzstan

Zholdoshbek Zh. Shermamatov

Lenin Avenue, 331, Osh 723500



References

1. Blinova I.,V., Grishanov E.N., Popov A.I., Popov I.Y., Smolkina M.O. On spin flip for electron scattering by several delta-potentials for 1D Hamiltonian with spin-orbit interaction. Nanosystems: Phys. Chem. Math., 2023, 14(4), P. 413–417.

2. Deka H., Sarma J. A numerical investigation of modified Burgers’ equation in dusty plasmas with non-thermal ions and trapped electrons. Nanosystems: Phys. Chem. Math., 2023, 14(1), P. 5–12.

3. Dweik J., Farhat H., Younis J. The Space Charge Model. A new analytical approximation solution of Poisson-Boltzmann equation: the extended homogeneous approximation. Nanosystems: Phys. Chem. Math., 2023, 14(4), P. 428–437.

4. Fedorov E.G., Popov I.Yu. Analysis of the limiting behavior of a biological neurons system with delay. J. Phys.: Conf. Ser., 2021, 2086(012109).

5. Fedorov E.G., Popov I.Yu. Hopf bifurcations in a network of Fitzhigh-Nagumo biological neurons. International Journ. Nonlinear Sciences and Numerical Simulation, 2021.

6. Fedorov E.G. Properties of an oriented ring of neurons with the FitzHugh-Nagumo model. Nanosystems: Phys. Chem. Math., 2021, 12(5), P. 553– 562.

7. Irgashev B.Yu. Boundary value problem for a degenerate equation with a Riemann-Liouville operator. Nanosystems: Phys. Chem. Math., 2023, 14(5), P. 511–517.

8. Kuljanov U.N. On the spectrum of the two-particle Schrodinger operator with point potential: one dimensional case. Nanosystems: Phys. Chem. Math., 2023, 14(5), P. 505–510.

9. Parkash C., Parke W.C., Singh P. Exact irregular solutions to radial Schrodinger equation for the case of hydrogen-like atoms. Nanosystems: Phys. Chem. Math., 2023, 14(1), P. 28–43.

10. Popov I.Y. A model of charged particle on the flat Mobius strip in a magnetic field. Nanosystems: Phys. Chem. Math., 2023, 14(4), P. 418–420.

11. Sibatov R.T., Svetukhin V.V. Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions. Theor. Math. Phys., 2015, 183, P. 846–859.

12. Vatutin A.D., Miroshnichenko G.P., Trifanov A.I. Master equation for correlators of normalordered field mode operators. Nanosystems: Phys. Chem. Math., 2022, 13(6), P. 628–631.

13. Uchaikin V.V., Sibatov R.T. Fractional kinetics in solids: Anomalous charge transport in semiconductors, dielectrics and nanosystems. CRC Press, Boca Raton, FL, 2013.

14. Matrasulov J., Yusupov J.R., Saidov A.A. Fast forward evolution in heat equation: Tunable heat transport in adiabatic regime. Nanosystems: Phys. Chem. Math., 2023, 14(4), P. 421–427.

15. Galaktionov V.A., Mitidieri E., Pohozaev S. Global sign-changing solutions of a higher order semilinear heat equation in the subcritical Fujita range. Advanced Nonlinear Studies, 2012, 12(3), P. 569–596.

16. Galaktionov V.A., Mitidieri E., Pohozaev S.I. Classification of global and blow-up sign-changing solutions of a semilinear heat equation in the subcritical Fujita range: second-order diffusion. Advanced Nonlinear Studies, 2014, 14(1), P. 1–29.

17. Denk R., Kaip M. Application to parabolic differential equations. In: General Parabolic Mixed Order Systems in Lp and Applications. Operator Theory: Advances and Applications, 239. Birkhauser, Cham., 2013. ¨

18. Van Dorsselaer H., Lubich C. Inertial manifolds of parabolic differential equations under high-order discretizations. Journ. of Numer. Analysis, 1099, 19(3), P. 455–471.

19. Ivanchov N.I. Boundary value problems for a parabolic equation with integral conditions. Differen. Equat., 2004, 40(4), P. 591–609.

20. Mulla M., Gaweash A., Bakur H. Numerical solution of parabolic in partial differential equations (PDEs) in one and two space variable. Journ. Applied Math. and Phys., 2022, 10(2), P. 311–321.

21. Nguyen H., Reynen J. A space-time least-square finite element scheme for advection-diffusion equations. Computer Methods in Applied Mech. and Engin., 1984, 42(3), P. 331–342.

22. Pinkas G. Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence, 1995, 77(2), P. 203–247.

23. Pohozaev S.I. On the dependence of the critical exponent of the nonlinear heat equation on the initial function. Differ. Equat., 2011, 47(7), P. 955– 962.

24. Pokhozhaev S.I. Critical nonlinearities in partial differential equations. Russ. J. Math. Phys., 2013, 20(4), P. 476–491.

25. Yuldashev T.K. Mixed value problem for a nonlinear differential equation of fourth order with small parameter on the parabolic operator. Comput. Math. Math. Phys., 2011, 51(9), P. 1596–1604.

26. Yuldashev T.K. Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power. Comput. Math. Math. Phys., 2012, 52(1), P. 105–116.

27. Yuldashev T.K. Nonlinear optimal control of thermal processes in a nonlinear Inverse problem. Lobachevskii Journ. Math., 2020, 41(1), P. 124–136.

28. Zonga Y., Heb Q., Tartakovsky A.M. Physics-informed neural network method for parabolic differential equations with sharply perturbed initial conditions. arXiv:2208.08635[math.NA], 2022, P. 1–50.

29. Ashurov R., Kadirkulov B., Jalilov M. On an inverse problem of the Bitsadze-Samarskii type for a parabolic equation of fractional order. Boletin de la Sociedad Matematica Mexicana, 2023, 29(3). P. 1–21.

30. Berdyshev A.S., Kadirkulov B.J. A Samarskii-Ionkin problem for two-dimensional parabolic equation with the Caputo fractional differential operator. Intern. J. Pure and Appl. Math., 2017, 113(4), P. 53–64.

31. Berdyshev A.S., Cabada A., Kadirkulov B.J. The Samarskii-Ionkin type problem for the fourth order parabolic equation with fractional differential operator. Inter. J. Computers and Math. with Appl., 2011, 62(10), P. 3884–3893.

32. Bilalov B.T., Sezer Y., Ildiz U., Hagverdi T. On the basicity of one trigonometric system in Orlicz spaces. Trans. Issue Math., Azerb. Nat. Academy of Sci., 2024, 44(1). P. 31–45.

33. Hadiyeva S.S. Basis property of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition. J. Contemp. Appl. Math., 2024, 14(2), P. 8–11.

34. Il’in V.A. On the solvability of mixed problems for hyperbolic and parabolic equations. Russian Math. Surveys, 1960, 15(2), P. 85–142.

35. Ionkin N.I., Moiseev E.I. A problem for heat transfer equation with two-point boundary conditions. Differentsial’nye Uravneniya, 1979, 15(7), P. 1284–1295. (in Russian)

36. Karahan D., Mamedov Kh.R., Yuldashev T.K. On a q-Dirichlet-Neumann problem with discontinuity conditions. Lobachevskii J. Math., 2022, 43(11), P. 3192–3197.

37. Nasibova N.P. Basicity of a perturbed system of exponents in Lebesgue spaces with a variable summability exponent. Baku Math. J., 2022, 1(1), P. 96–105.

38. Abdullayev V.M. Numerical solution to optimal control problems with multipoint and integral conditions. Proc. of the Inst. of Math. and Mech., 2018, 44(2), P. 171–186.

39. Ashirbaev B.Y., Yuldashev T.K. Derivation of a controllability criteria for a linear singularly perturbed discrete system with small step. Lobachevskii J. Math., 2024, 45(3), P. 938–948.

40. Butkovsky A.G., Pustylnikov L.M. Theory of mobile control of systems with distributed parameters. Moscow, Nauka, 1980. 384 p. (in Russian)

41. Deineka V.S. Optimal control of the dynamic state of a thin compound plate. Cybernetics and Systems Analysis, 2006, 42(4), P. 151–157.

42. Deumlich R., Elster K.H. Duality theorems and optimality, conditions for nonconvex optimization problems. Math. Operations Forsch. Statist. Ser. Optimiz., 1980, 11(2), P. 181–219.

43. Kerimbekov A.K., Nametkulova R.J., Kadirimbetova A.K. Optimality conditions in the problem of thermal control with integral-differential equation. Vestnik Irkutsk Gos. Univers., Matematika, 2016, 15 P. 50–61. (in Russian)

44. Kerimbekov A.K., Abdyldaeva E.F. On the solvability of the tracking problem in nonlinear vector optimization of oscillatory processes. Trudy IMM UrO RAN, 2024, 30(2), P. 103–115.

45. Mahmudov E.N. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evol. Equ. Contr. Theory, 2021, 10(1), P. 37–59.

46. Mahmudov E.N., Mardanov M.J. Optimization of the Nicoletti boundary value problem for second order differential inclusions. Proc. of the Inst. of Math. and Mech., 2023, 49(1), P. 3–15.

47. Mardanov M.J., Melikov T.K. A method for studying the optimality of controls in discrete systems. Proc. Inst. Math. Mech., 2014, 40(2), P. 5–13.

48. Ramazanova A. Necessary conditions for the existence of a saddle point in one optimal control problem for systems of hyperbolic equations. European J. Pure and Appl. Math. 2021, 14(4), P. 1402–1414.

49. Ramazanova A.T., Abdullozhonova A.N., Yuldashev T.K. Optimal mobile control in inverse problem for Barenblatt–Zheltov–Kochina type fractional order equation. Lobachevskii J. Math., 2025, 46(1), P. 488–501.

50. Yuldashev T.K., Ashirbaev B.Y. Optimal feedback control problem for a singularly perturbed discrete system. Lobachevskii J. Math., 2023, 44(2), P. 661–668.

51. Albeverio S., Alimov Sh.A. On a time-optimal control problem associated with the heat exchange process. Applied Math. and Optimiz., 2008, 57(1), P. 58–68.

52. Azamov A.A., Ibragimov G.I., Mamayusupov K., Ruzibaev M.B. On the stability and null controllability of an infinite system of linear differential equations. J. Dynam. and Contr. Syst., 2021.

53. Azamov A.A., Ruziboev M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. and Mech., 2013. 77(2), P. 220–224.

54. Yuldashev T.K., Ramazanova A.T., Shermamatov Zh.Zh. Optimal control problem for a linear pseudoparabolic equation with final condition, degeneration and Gerasimov-Caputo operator. Azerbaijan Journal of Mathematics, 2025, 15(1), P. 257–283.

55. Bari N.K. Biorthogonal systems and bases in Hilbert space. Uch. Zap. MGU, 1951, 148(4), P. 69–107. (in Russian)

56. Gokhberg I.S., Krein M.G. Introduction to the theory of linear non-selfadjoint operators. Moscow, Nauka, 1965. (in Russian)

57. Keselman G.M. On non-conditional convergence of expansions by eigenfunctions of some differential operators. Izv. vuzov. Matem., 1969, 2, P. 82–93. (in Russian)

58. Fokin M.I., Markov S.I., Shtanko E.I. A Numerical method for estimating the effective thermal conductivity coefficient of Hydrate-Bearing Rock Samples using synchrotron microtomography data. Math. Models Comput. Simul., 2024, 16, P. 896–905.

59. Lugovsky A.Y., Lukin V.V. About the influence of accounting for the energy equation on the formation model of a large-scale vortical flow in the accreting envelope of a protostar. Math. Models Comput. Simul., 2024, 16, P. 676–686.

60. Polyakov S.V., Podryga V.O. On a boundary model in problems of the gas flow around solids. Math. Models Comput. Simul., 2024, 16, P. 752–761.

61. Belousov A.O., Gordeyeva V.O. Optimization of protective devices with modal phenomena using global optimization algorithms. Math. Models Comput. Simul., 2024, 16 (Suppl. 1), P. S12–S35.


Supplementary files

Review

For citations:


Yuldashev T.K., Kadirkulov B.J., Ramazanova A.T., Shermamatov Zh.Zh. Nonlinear optimal control problem in a two-point boundary regime for a pseudoparabolic equation with Samarskii–Ionkin type conditions. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):563-576. https://doi.org/10.17586/2220-8054-2025-16-5-563-576

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)