Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Inclusions of metastable superconducting phase of gallium in SmGa2

https://doi.org/10.17586/2220-8054-2025-16-5-593-596

Abstract

The magnetization M of the SmGa2 compound has a paramagnetic character in a wide temperature range, and when the temperature decreases below 30 K, a significant increase in magnetization is observed, which indicates the formation of a magnetically ordered state. At temperatures below 5 K, a sharp feature is observed on the M(H) dependences, which is the contribution from the magnetization of superconducting submicron gallium inclusions. Analysis of the M(H) dependences measured at different temperatures below 5 K allowed us to assume the presence of two superconducting gallium phases. The critical temperature TC = 5.9 K and the critical field HC (0) = 560 Oe correspond to the formation of a metastable β-phase of gallium, and the critical temperature TC = 8.4 K and the critical field HC (0) = 1100 Oe can be associated with the formation of a thin layer of amorphous gallium on the surface of the β-phase inclusions.

About the Authors

A. E. Shitov
Ioffe Institute
Russian Federation

Alexander E. Shitov

26 Politekhnicheskaya st., Saint Petersburg, 194021



M. P. Volkov
Ioffe Institute
Russian Federation

Mikhail P. Volkov

26 Politekhnicheskaya st., Saint Petersburg, 194021



References

1. Kanatzidis M.G., Pottgen R., Jeitschko W. The metal flux: A preparative tool for the exploration of intermetallic compounds. Angew. Chem. Int. Ed., 2005, 44, P. 6996–7023.

2. Blanco J.A., Gignoux D., J.C. Gomez Sal et al. Magnetic properties of SmGa2. Physica B: condensed matter, 1991, 175(4), P. 349–353.

3. Ballou R., Barthem V.M.T.S. and Gignoux D. Crystal field effects in the hexagonal SmNi5 compound. Physica B, 1988, 149, P. 340.

4. W.J. De Haas, Voogd J. On the superconductivity of the gallium. Commun. Phys. Lab. Univ. Leiden, 1929, 199d, P. 733–734.

5. Roberts B.W. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data, 1976, 5, P. 581–821.

6. Sharma B.D. and Donohue J. A refinement of the crystal structure of gallium. Zeitschrift fur Kristallographie ¨ , 1962, 117, P. 293.

7. Bosio L., Curien H., Dupont M. et al. Structure cristalline de Gaδ. Acta Crystallographica Section B, 1973, 29, P. 367.

8. Bosio L. Crystal structures of Ga(II) and Ga(III). The Journal of Chemical Physics, 1978, 68, P. 1221.

9. Degtyareva O., McMahon M.I., Allan D.R. et al. Structural Complexity in Gallium under High Pressure: Relation to Alkali Elements. Phys. Rev. Lett., 2004, 93, P. 205502.

10. Feder J., Kiser S., Rothwarf F. et al. Hysteresis effects in three superconducting phases of gallium. Solid State Comm., 1966, 4, P. 611.

11. Parr H. and Feder J. Superconductivity in β-Phase Gallium. Phys. Rev. B, 1973, 7, P. 166.

12. D. Campanini, Z. Diao, and A. Rydh. Raising the superconducting TC of gallium: In situ characterization of the transformation of α-Ga into β-Ga. Phys. Rev. B, 2018, 97, P. 184517.

13. Frohlingsdorf J., Stritzker B. Amorphous gallium produced by pulsed excimer laser irradiation. In: Draper C.W., Mazzoldi P. (eds) Laser surface treatment of metals. NATO ASI series vol 115 Springer Dordrecht, 1986.

14. Moura K.O., Pirota K.R., Beron F. et al. Superconducting Properties in Arrays of Nanostructured ´ β-Gallium. Scientific Reports, 2017, 7, P. 15306.

15. Giedigkeit R., Niewa R., Schnelle W. et al. On the Binary Compound YbGa5. ZAAC, 2002, 628, P. 1692–1696.

16. Gosk J.B., Bockowski M., Tokarczyk M. et al. Superconductivity Study of GaN Highly Doped by Transition Metals. ´ Acta Physica Polonica A, 2013, 124(5), P. 877–880.

17. Petitmangin A., Gallas B., Hebert C. et al. Characterization of oxygen deficient gallium oxide films grown by PLD. Applied Surface Science, 2013, 278, P. 153–157.

18. Petitmangin A., Hebert C., Perri ´ ere J. et al. Metallic clusters in nonstoichiometric gallium oxide films. ´ J. Appl. Phys., 2011, 109, P. 013711.

19. Heera V., Fiedler J., Hubner R. et al. Silicon films with gallium-rich nanoinclusions: from superconductor to insulator. ¨ New J. Phys., 2013, 15, P. 083022.

20. Sun Y.B., Di Z.F., Hu T., et al. The Insulator to Superconductor Transition in Ga-Doped Semiconductor Ge Single Crystal Induced by the Annealing Temperature. Adv. in Cond. Matt. Phys., 2015, 4, P. 963768.

21. Meng R.L., Lorenz B., Wang Y.S. et al. Study of binary and pseudo-binary intermetallic compounds with AlB2 structure. Physica C, 2002, 382, P. 113–116.

22. Demishev S.V., Kosichkin Yu.V., Sluchanko N.E. et al. Crystallization of metastable phases and superconductivity in amorphous gallium antimonide. JETP, 1993, 77(1), P. 68.

23. Komissarova T.A., Parfeniev R.V., Ivanov S.V. Comment on “Superconductivity in heavily compensated Mg-doped InN” [Appl. Phys. Lett., 2009, 94, P. 142108]. Appl. Phys. Lett., 2009, 95, P. 086101.


Supplementary files

Review

For citations:


Shitov A.E., Volkov M.P. Inclusions of metastable superconducting phase of gallium in SmGa2. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):593-596. https://doi.org/10.17586/2220-8054-2025-16-5-593-596

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)