Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Physicochemical aspects and cellular effects of nanoceria-human serum albumin conjugates

https://doi.org/10.17586/2220-8054-2025-16-5-606-618

Abstract

Nanoceria exhibits unique catalytic properties towards reactive oxygen species (ROS), which act as mediators of key signaling pathways. Albumin is the most abundant blood protein, and its interaction with nanoceria modifies the properties of both nanoceria and albumin. Using an in vitro model of human embryonic lung fibroblasts, we investigated biochemical properties of nanoceria–albumin conjugates towards cell viability, intracellular reactive oxygen species, expression of NOX4, NRF2, and NF-κB, oxidative DNA damage/repair, apoptosis, cell proliferation, and autophagy. The results demonstrate that albumin binding alters the physicochemical properties of nanoceria, promoting efficient cellular uptake through modulation of surface interactions. This conjugation attenuates nanoceria’s influence on intracellular reactive oxygen species equilibrium and mitochondrial membrane potential by modifying nanoparticle-protein interfacial dynamics. Notably, albumin-bound nanoceria induces a stronger activation of NOX4, resulting in increased genotoxic stress; however, the enhanced activation of DNA repair pathways mitigates this damage more efficiently than bare nanoceria. Furthermore, albumin-to-nanoceria conjugation modulates signaling pathways by enhancing suppression of the pro-inflammatory NF-κB cascade and stimulating autophagic processes. Overall, the physicochemical effects of nanoceria modification due to albumin conjugation reduce cytotoxicity of nanoceria while augmenting its anti-inflammatory and regenerative potential.

About the Authors

E. V. Proskurnina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Elena V. Proskurnina

Moscow 119991



S. V. Kostyuk
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Petrovsky Russian Scientific Center of Surgery, Institute of Longevity with a Clinic of Rehabilitation and Preventive Medicine
Russian Federation

Svetlana V. Kostyuk

Moscow 119991; Moscow 119435



M. M. Sozarukova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Madina M. Sozarukova

Moscow 119991



E. S. Ershova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Petrovsky Russian Scientific Center of Surgery, Institute of Longevity with a Clinic of Rehabilitation and Preventive Medicine
Russian Federation

Elizaveta S. Ershova

Moscow 119991; Moscow 119435



N. N. Veiko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Petrovsky Russian Scientific Center of Surgery, Institute of Longevity with a Clinic of Rehabilitation and Preventive Medicine
Russian Federation

Natalia N. Veiko

Moscow 119991; Moscow 119435



M. A. Popkov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Matvei A. Popkov

Moscow 119991



E. V. Kostyuk
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Edmund V. Kostyuk

Moscow 119991



A. V. Martynov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Andrey V. Martynov

Moscow 119991



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Vladimir K. Ivanov

Moscow 119991



References

1. Korsvik C., Patil S., Seal S. et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, 10, P. 1056.

2. Ivanov V.K., Usatenko A.V., Shcherbakov A.B. Antioxidant activity of nanocrystalline ceria to anthocyanins. Russ. J. Inorg. Chem., 2009, 54(10), P. 1522–1527.

3. Pirmohamed T., Dowding J.M., Singh S. et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun., 2010, 46(16), P. 2736.

4. Asati A., Santra S., Kaittanis C. et al. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chemie Int. Ed., 2009, 48(13), P. 2308–2312.

5. Liu B., Huang Z., Liu J. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F− detection. Nanoscale, 2016, 8(28), P. 13562–13567.

6. Yao T., Tian Z., Zhang Y. et al. Phosphatase-like Activity of Porous Nanorods of CeO2 for the Highly Stabilized Dephosphorylation under Interferences. ACS Appl. Mater. Interfaces, 2019, 11(1), P. 195–201.

7. Tian Z., Yao T., Qu C. et al. Photolyase-Like Catalytic Behavior of CeO2. Nano Lett., 2019, 19(11), P. 8270–8277.

8. Khulbe K., Karmakar K., Ghosh S. et al. Nanoceria-Based Phospholipase-Mimetic Cell Membrane Disruptive Antibiofilm Agents. ACS Appl. Bio Mater., 2020, 3(7), P. 4316–4328.

9. Xu F., Lu Q., Huang P.-J.J. et al. Nanoceria as a DNase I mimicking nanozyme. Chem. Commun., 2019, 55(88), P. 13215–13218.

10. Wu N., Liu T., Tian M. et al. Albumin, an interesting and functionally diverse protein, varies from ‘native’ to ‘effective’ (Review). Mol. Med. Rep., 2023, 29(2), P. 24.

11. Tao C., Chuah Y.J., Xu C. et al. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J. Mater. Chem. B, 2019, 7(3), P. 357–367.

12. Qu N., Song K., Ji Y. et al. Albumin Nanoparticle-Based Drug Delivery Systems. Int. J. Nanomedicine, 2024, 19, P. 6945–6980.

13. Tincu C.-E., Andrit¸oiu C.V., Popa M. et al. Recent Advancements and Strategies for Overcoming the Blood–Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel), 2023, 15(19), P. 3969.

14. Butterfield A.D., Wang B., Wu P. et al. Plasma and Serum Proteins Bound to Nanoceria: Insights into Pathways by which Nanoceria may Exert Its Beneficial and Deleterious Effects In Vivo. J. Nanomed. Nanotechnol., 2020, 11(4), P. 546.

15. Fanciullino R., Ciccolini J., Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nanoalbumin-bound drugs. Crit. Rev. Oncol. Hematol., 2013, 88(3), P. 504–513.

16. Zhu Y., Xue J., Chen W. et al. Albumin-biomineralized nanoparticles to synergize phototherapy and immunotherapy against melanoma. J. Control. Release, 2020, 322, P. 300–311.

17. Gou Y., Zhang Z., Qi J. et al. Folate-functionalized human serum albumin carrier for anticancer copper(II) complexes derived from natural plumbagin. J. Inorg. Biochem., 2015, 153, P. 13–22.

18. Kim D., Amatya R., Hwang S. et al. BSA-Silver Nanoparticles: A Potential Multimodal Therapeutics for Conventional and Photothermal Treatment of Skin Cancer. Pharmaceutics, 2021, 13(4), P. 575.

19. Jaiswal V.D., Pangam D.S., Dongre P.M. Biophysical study of cisplatin loaded albumin-gold nanoparticle and its interaction with glycans of gp60 receptor. Int. J. Biol. Macromol., 2023, 231, P. 123368.

20. Korolev D., Shumilo M., Shulmeyster G. et al. Hemolytic Activity, Cytotoxicity, and Antimicrobial Effects of Human Albumin- and Polysorbate80-Coated Silver Nanoparticles. Nanomaterials, 2021, 11(6), P. 1484.

21. Park H.-Y., Chung C., Eiken M.K. et al. Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. Front. Toxicol., 2023, 5, P. 1081753.

22. Chen J.L.-Y., Yang S.-J., Pan C.-K. et al. Cisplatin and Albumin-Based Gold–Cisplatin Nanoparticles Enhance Ablative Radiation Therapy– Induced Antitumor Immunity in Local and Distant Tumor Microenvironment. Int. J. Radiat. Oncol., 2023, 116(5), P. 1135–1149.

23. Gou Y., Zhang Y., Qi J. et al. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin. J. Inorg. Biochem., 2015, 144, P. 47–55.

24. He C., Xie M., Hong F. et al. A Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochim. Acta, 2016, 222, P. 1709–1715.

25. Janani B., Raju L.L., Thomas A.M. et al. Impact of bovine serum albumin – A protein corona on toxicity of ZnO NPs in environmental model systems of plant, bacteria, algae and crustaceans. Chemosphere, 2021, 270, P. 128629.

26. Bhushan B., Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J. Mater. Chem. B, 2015, 3(24), P. 4843–4852.

27. Yang Z., Luo S., Zeng Y. et al. Albumin-Mediated Biomineralization of Shape-Controllable and Biocompatible Ceria Nanomaterials. ACS Appl. Mater. Interfaces, 2017, 9(8), P. 6839–6848.

28. Yeni Y., Genc S., Nadaroglu H. et al. Effects of quercetin-immobilized albumin cerium oxide nanoparticles on glutamate toxicity: in vitro study. Naunyn. Schmiedebergs. Arch. Pharmacol., 2025, 398(5), P. 5147–5156.

29. Khoshgozaran Roudbaneh S.Z., Kahbasi S., Sohrabi M.J. et al. Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. J. Mol. Liq., 2019, 296, P. 111839.

30. Shcherbakov A.B., Teplonogova M.A., Ivanova O.S. et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols. Mater. Res. Express, 2017, 4(5), P. 055008.

31. Creed S., McKenzie M. Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Methods Mol. Biol., 2019, 1928, P. 69–76.

32. Luik A.I., Naboka Y.N., Mogilevich S.E. et al. Study of human serum albumin structure by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 1998, 54(10), P. 1503– 1507.

33. Velichko E., Makarov S., Nepomnyashchaya E. et al. Molecular Aggregation in Immune System Activation Studied by Dynamic Light Scattering. Biology (Basel), 2020, 9(6), P. 123.

34. Bardik V., Gotsulskii V., Pavlov E. et al. Light scattering study of human serum albumin in pre-denaturation: Relation to dynamic transition in water at 42◦C. J. Mol. Liq., 2012, 176, P. 60–64.

35. Liu Y., Yang Z., Zhang X. et al. Shape/Crystal Facet of Ceria Induced Well-Dispersed and Stable Au Nanoparticles for the Selective Hydrogenation of Phenylacetylene. Catal. Letters, 2019, 149(2), P. 361–372.

36. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. Peroxidase-like Activity of CeO2 Nanozymes: Particle Size and Chemical Environment Matter. Molecules, 2023, 28(9), P. 3811.

37. Sozarukova M.M., Kochneva E.M., Proskurnina E.V. et al. Albumin Retains Its Transport Function after Interaction with Cerium Dioxide Nanoparticles. ACS Biomater. Sci. Eng., 2023, 9(12), P. 6759–6772.

38. Pustulka S.M., Ling K., Pish S.L. et al. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. ACS Appl. Mater. Interfaces, 2020, 12(43), P. 48284–48295.

39. Lundqvist M., Stigler J., Elia G. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci., 2008, 105(38), P. 14265–14270.

40. Chaudhary Y.S., Panigrahi S., Nayak S. et al. Facile synthesis of ultra-small monodisperse ceria nanocrystals at room temperature and their catalytic activity under visible light. J. Mater. Chem., 2010, 20(12), P. 2381.

41. Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol., 2000, 74(3–5), P. 141–173.

42. Diaconeasa Z., Barbu-Tudoran L., Coman C. et al. Cerium oxide nanoparticles and its cytotoxicity human lung cancer cells. Rom. Biotechnol. Lett., 2015, 20, P. 10679.

43. Tang J., Luan F., Chen X. Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg. Med. Chem., 2006, 14(9), P. 3210–3217.

44. Usoltsev D., Sitnikova V., Kajava A. et al. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules, 2019, 9(8), P. 359.

45. Umezawa M., Itano R., Sakaguchi N. et al. Infrared spectroscopy analysis determining secondary structure change in albumin by cerium oxide nanoparticles. Front. Toxicol., 2023, 5, P. 1237819.

46. Kogelheide F., Kartaschew K., Strack M. et al. FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules. J. Phys. D. Appl. Phys., 2016, 49(8), P. 084004.

47. Patel V., Jose L., Philippot G. et al. Fluoride-assisted detection of glutathione by surface Ce3+/Ce4+ engineered nanoceria. J. Mater. Chem. B, 2022, 10(47), P. 9855–9868.

48. Proskurnina E.V., Sozarukova M.M., Ershova E.S. et al. Lipid Coating Modulates Effects of Nanoceria on Oxidative Metabolism in Human Embryonic Lung Fibroblasts: A Case of Cardiolipin. Biomolecules, 2025, 15(1), P. 53.

49. Yuan D., Shen Z., Liu R. et al. Study on the binding of cerium to bovine serum albumin. J. Biochem. Mol. Toxicol., 2011, 25(4), P. 263–268.

50. Simon-V ´ azquez R., Lozano-Fern ´ andez T., Peleteiro-Olmedo M. et al. Conformational changes in human plasma proteins induced by metal oxide ´ nanoparticles. Colloids Surfaces B Biointerfaces, 2014, 113, P. 198–206.

51. Liu W., Rose J., Plantevin S. et al. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale, 2013, 5(4), P. 1658.

52. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E. et al. Antioxidant Activity of Conjugates of Cerium Dioxide Nanoparticles with Human Serum Albumin Isolated from Biological Fluids. Russ. J. Inorg. Chem., 2023, 68(10), P. 1495–1502.


Supplementary files

Review

For citations:


Proskurnina E.V., Kostyuk S.V., Sozarukova M.M., Ershova E.S., Veiko N.N., Popkov M.A., Kostyuk E.V., Martynov A.V., Ivanov V.K. Physicochemical aspects and cellular effects of nanoceria-human serum albumin conjugates. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):606-618. https://doi.org/10.17586/2220-8054-2025-16-5-606-618

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)